|
--- |
|
base_model: yihongLiu/furina |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: furina_seed42_eng_esp_hau_basic_2e-05 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# furina_seed42_eng_esp_hau_basic_2e-05 |
|
|
|
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0221 |
|
- Spearman Corr: 0.7567 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------:| |
|
| No log | 1.45 | 200 | 0.0291 | 0.6127 | |
|
| 0.0714 | 2.91 | 400 | 0.0240 | 0.7147 | |
|
| 0.0265 | 4.36 | 600 | 0.0235 | 0.7297 | |
|
| 0.0265 | 5.82 | 800 | 0.0266 | 0.7353 | |
|
| 0.0199 | 7.27 | 1000 | 0.0225 | 0.7407 | |
|
| 0.016 | 8.73 | 1200 | 0.0233 | 0.7521 | |
|
| 0.0127 | 10.18 | 1400 | 0.0232 | 0.7541 | |
|
| 0.0127 | 11.64 | 1600 | 0.0237 | 0.7530 | |
|
| 0.0107 | 13.09 | 1800 | 0.0219 | 0.7558 | |
|
| 0.0088 | 14.55 | 2000 | 0.0233 | 0.7486 | |
|
| 0.0078 | 16.0 | 2200 | 0.0219 | 0.7540 | |
|
| 0.0078 | 17.45 | 2400 | 0.0224 | 0.7545 | |
|
| 0.007 | 18.91 | 2600 | 0.0230 | 0.7599 | |
|
| 0.0062 | 20.36 | 2800 | 0.0217 | 0.7575 | |
|
| 0.0062 | 21.82 | 3000 | 0.0225 | 0.7569 | |
|
| 0.0058 | 23.27 | 3200 | 0.0220 | 0.7563 | |
|
| 0.0054 | 24.73 | 3400 | 0.0226 | 0.7551 | |
|
| 0.0052 | 26.18 | 3600 | 0.0223 | 0.7564 | |
|
| 0.0052 | 27.64 | 3800 | 0.0222 | 0.7565 | |
|
| 0.0049 | 29.09 | 4000 | 0.0221 | 0.7567 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|