xlm-roberta-large_product_classifier

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3981
  • Accuracy: 0.8169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 490 0.8869 0.7423
1.3297 2.0 980 0.7796 0.7798
0.7265 3.0 1470 0.7592 0.7872
0.5509 4.0 1960 0.8112 0.7949
0.4258 5.0 2450 0.8498 0.7875
0.3307 6.0 2940 0.8326 0.8036
0.2702 7.0 3430 0.8833 0.8066
0.2078 8.0 3920 0.9260 0.8066
0.1571 9.0 4410 0.9800 0.8087
0.1242 10.0 4900 1.0725 0.8043
0.0962 11.0 5390 1.2147 0.7946
0.0857 12.0 5880 1.1705 0.8123
0.0667 13.0 6370 1.2551 0.8041
0.052 14.0 6860 1.2762 0.8184
0.0414 15.0 7350 1.3442 0.8115
0.0313 16.0 7840 1.3510 0.8130
0.0247 17.0 8330 1.3754 0.8133
0.0158 18.0 8820 1.3915 0.8135
0.0162 19.0 9310 1.3975 0.8186
0.0109 20.0 9800 1.3981 0.8169

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 2.21.0
  • Tokenizers 0.21.0
Downloads last month
61
Safetensors
Model size
560M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ShynBui/xlm-roberta-large_product_classifier

Finetuned
(346)
this model