sptest-rinna-w2v2-base-kanji-RSs-0112

This model is a fine-tuned version of rinna/japanese-wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3348
  • Cer: 0.4308
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 38750
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
67.7037 1.0 3878 53.2477 0.9833 1.0
5.235 2.0 7756 7.4842 0.9833 1.0
4.9859 3.0 11634 7.2036 0.9833 1.0
4.4234 4.0 15512 6.3211 0.9184 1.0
3.4727 5.0 19390 4.7569 0.7974 1.0
2.4254 6.0 23268 3.2544 0.6374 1.0
1.7561 7.0 27146 2.5051 0.5555 1.0
1.3871 8.0 31024 2.0472 0.4927 1.0
1.2092 9.0 34902 2.0813 0.5507 1.0
1.0836 10.0 38780 1.7959 0.4693 1.0
0.9881 11.0 42658 1.6362 0.4419 1.0
0.9027 12.0 46536 1.6809 0.4509 1.0
0.8279 13.0 50414 1.6806 0.4437 1.0
0.7737 14.0 54292 1.6882 0.4390 1.0
0.7186 15.0 58170 1.6895 0.4339 1.0
0.6666 16.0 62048 1.7808 0.4459 1.0
0.6231 17.0 65926 1.7291 0.4400 1.0
0.577 18.0 69804 1.8842 0.4855 1.0
0.5412 19.0 73682 1.7856 0.4580 1.0
0.5075 20.0 77560 1.7994 0.4405 1.0
0.4859 21.0 81438 1.8741 0.4423 1.0
0.4559 22.0 85316 1.9860 0.4439 1.0
0.4245 23.0 89194 1.9108 0.4594 1.0
0.3977 24.0 93072 1.9349 0.4439 1.0
0.3669 25.0 96950 2.0505 0.4435 1.0
0.3544 26.0 100828 2.1177 0.4476 1.0
0.3274 27.0 104706 2.2021 0.4611 1.0
0.3108 28.0 108584 2.1119 0.4445 1.0
0.2923 29.0 112462 2.0917 0.4361 1.0
0.2832 30.0 116340 2.0835 0.4373 1.0
0.2595 31.0 120218 2.0585 0.4402 1.0
0.2378 32.0 124096 2.1043 0.4348 1.0
0.2306 33.0 127974 2.1317 0.4324 1.0
0.217 34.0 131852 2.1674 0.4418 1.0
0.2091 35.0 135730 2.2216 0.4466 1.0
0.193 36.0 139608 2.2977 0.4400 1.0
0.1903 37.0 143486 2.2430 0.4318 1.0
0.1769 38.0 147364 2.2251 0.4299 1.0
0.1684 39.0 151242 2.2592 0.4357 1.0
0.1635 40.0 155120 2.2510 0.4302 1.0
0.1567 41.0 158998 2.3432 0.4347 1.0
0.1518 42.0 162876 2.3085 0.4314 1.0
0.1424 43.0 166754 2.2984 0.4314 1.0
0.1448 44.0 170632 2.3247 0.4315 1.0
0.1401 45.0 174510 2.3353 0.4322 1.0
0.1389 46.0 178388 2.3436 0.4298 1.0
0.1353 47.0 182266 2.3329 0.4302 1.0
0.1337 48.0 186144 2.3272 0.4304 1.0
0.1332 49.0 190022 2.3333 0.4301 1.0
0.1365 50.0 193900 2.3348 0.4308 1.0

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.3.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
0
Safetensors
Model size
96.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SiRoZaRuPa/sptest-rinna-w2v2-base-kanji-RSs-0112

Finetuned
(3)
this model