Ssarion's picture
Update README.md
cf8dfa4
|
raw
history blame
1.98 kB
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: bart-base-multi-news
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: multi_news
type: multi_news
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 26.77
- name: Rouge2
type: rouge
value: 10.28
- name: Rougel
type: rouge
value: 21.26
- name: Rougelsum
type: rouge
value: 22.02
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-multi-news
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4116
- Rouge1: 26.77
- Rouge2: 10.28
- Rougel: 21.26
- Rougelsum: 22.02
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.7976 | 1.0 | 1250 | 2.4116 | 26.77 | 10.28 | 21.26 | 22.02 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3