Steve77's picture
Add new SentenceTransformer model
3ae1f75 verified
metadata
base_model: nomic-ai/modernbert-embed-base
language:
  - fr
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_ndcg@15
  - cosine_ndcg@20
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:47560
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Pourquoi l'enfant de Jéroboam sera-t-il le seul de sa maison à être
      enterré?
    sentences:
      - Nathan le prophète.
      - >-
        Parce qu'il est le seul de la maison de Jéroboam en qui se soit trouvé
        quelque chose de bon devant l'Éternel, le Dieu d'Israël.
      - Deux ans.
  - source_sentence: >-
      Que dit le texte sur la foi capable de transporter des montagnes sans
      charité?
    sentences:
      - Urie était un Héthien.
      - >-
        Il dit que même avec une foi capable de transporter des montagnes, sans
        la charité, cela ne vaut rien.
      - >-
        David est allé se présenter devant l'Éternel et a exprimé son humilité
        et sa gratitude envers Dieu.
  - source_sentence: Quels sont les noms des fils de Schobal?
    sentences:
      - Reaja, Jachath, Achumaï et Lahad.
      - Le côté du midi échut à Obed-Édom, et la maison des magasins à ses fils.
      - Meschélémia avait dix-huit fils et frères vaillants.
  - source_sentence: Qui a succédé au roi Asa après sa mort?
    sentences:
      - 'L''un dit: Moi, je suis de Paul! Et un autre: Moi, d''Apollos!'
      - >-
        Neuf fils: Zemira, Joasch, Éliézer, Éljoénaï, Omri, Jerémoth, Abija,
        Anathoth et Alameth, enregistrés au nombre de vingt mille deux cents.
      - Josaphat, son fils.
  - source_sentence: >-
      Quelles tâches les Lévites devaient-ils accomplir dans le service de la
      maison de l'Éternel?
    sentences:
      - >-
        Ils devaient prendre soin des parvis et des chambres, purifier toutes
        les choses saintes, s'occuper des pains de proposition, de la fleur de
        farine pour les offrandes, des galettes sans levain, des gâteaux cuits
        sur la plaque et des gâteaux frits, et de toutes les mesures de capacité
        et de longueur.
      - >-
        Les chefs des maisons paternelles, les chefs des tribus d'Israël, les
        chefs de milliers et de centaines, et les intendants du roi.
      - Les enfants sont considérés comme saints.
co2_eq_emissions:
  emissions: 11.494424944753328
  energy_consumed: 0.20511474053343792
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
  ram_total_size: 7.6847381591796875
  hours_used: 6.806
  hardware_used: 1 x NVIDIA GeForce GTX 1660 Ti
model-index:
  - name: modernbert-embed-base-bible
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.17498667614141056
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.24835672410730147
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.2762480014212116
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.320305560490318
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.17498667614141056
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08278557470243382
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.05524960028424231
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0320305560490318
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.17498667614141056
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.24835672410730147
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.2762480014212116
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.320305560490318
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.24430049048684818
            name: Cosine Ndcg@10
          - type: cosine_ndcg@15
            value: 0.2525347835304927
            name: Cosine Ndcg@15
          - type: cosine_ndcg@20
            value: 0.2574496509992833
            name: Cosine Ndcg@20
          - type: cosine_mrr@10
            value: 0.2204687601338871
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22764969395073778
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.17161129863208385
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.24018475750577367
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.2719843666725884
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.31621957718955407
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.17161129863208385
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08006158583525788
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.05439687333451768
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.03162195771895541
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.17161129863208385
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.24018475750577367
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.2719843666725884
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.31621957718955407
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.23947113373513576
            name: Cosine Ndcg@10
          - type: cosine_ndcg@15
            value: 0.24636222462199156
            name: Cosine Ndcg@15
          - type: cosine_ndcg@20
            value: 0.2517242130957284
            name: Cosine Ndcg@20
          - type: cosine_mrr@10
            value: 0.2154852845384024
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2225725360678114
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.16024160596908865
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.22757150470776336
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.2602593711138746
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.3075146562444484
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.16024160596908865
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07585716823592112
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.052051874222774915
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.030751465624444838
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.16024160596908865
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.22757150470776336
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.2602593711138746
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.3075146562444484
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.22844579790475078
            name: Cosine Ndcg@10
          - type: cosine_ndcg@15
            value: 0.2357050364715922
            name: Cosine Ndcg@15
          - type: cosine_ndcg@20
            value: 0.24051535612507915
            name: Cosine Ndcg@20
          - type: cosine_mrr@10
            value: 0.20381231547513284
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.21077486383464478
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.14372002131817374
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.20465446793391368
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.23307869959140168
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.279445727482679
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14372002131817374
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.06821815597797122
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.04661573991828033
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0279445727482679
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14372002131817374
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.20465446793391368
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.23307869959140168
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.279445727482679
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.20572968417646773
            name: Cosine Ndcg@10
          - type: cosine_ndcg@15
            value: 0.21411686675503838
            name: Cosine Ndcg@15
          - type: cosine_ndcg@20
            value: 0.21935674398662894
            name: Cosine Ndcg@20
          - type: cosine_mrr@10
            value: 0.1828928000406064
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.19012440317942259
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.11067685201634393
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.15953100017765146
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.18617871735654645
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.22721620181204477
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.11067685201634393
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05317700005921715
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.03723574347130929
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.022721620181204476
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11067685201634393
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.15953100017765146
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.18617871735654645
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.22721620181204477
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.16327341570689552
            name: Cosine Ndcg@10
          - type: cosine_ndcg@15
            value: 0.1699977455983759
            name: Cosine Ndcg@15
          - type: cosine_ndcg@20
            value: 0.17462327712912765
            name: Cosine Ndcg@20
          - type: cosine_mrr@10
            value: 0.1435284115422685
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1500325081763102
            name: Cosine Map@100

modernbert-embed-base-bible

This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/modernbert-embed-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: fr
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Steve77/modernbert-embed-base-bible")
# Run inference
sentences = [
    "Quelles tâches les Lévites devaient-ils accomplir dans le service de la maison de l'Éternel?",
    "Ils devaient prendre soin des parvis et des chambres, purifier toutes les choses saintes, s'occuper des pains de proposition, de la fleur de farine pour les offrandes, des galettes sans levain, des gâteaux cuits sur la plaque et des gâteaux frits, et de toutes les mesures de capacité et de longueur.",
    "Les chefs des maisons paternelles, les chefs des tribus d'Israël, les chefs de milliers et de centaines, et les intendants du roi.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.175 0.1716 0.1602 0.1437 0.1107
cosine_accuracy@3 0.2484 0.2402 0.2276 0.2047 0.1595
cosine_accuracy@5 0.2762 0.272 0.2603 0.2331 0.1862
cosine_accuracy@10 0.3203 0.3162 0.3075 0.2794 0.2272
cosine_precision@1 0.175 0.1716 0.1602 0.1437 0.1107
cosine_precision@3 0.0828 0.0801 0.0759 0.0682 0.0532
cosine_precision@5 0.0552 0.0544 0.0521 0.0466 0.0372
cosine_precision@10 0.032 0.0316 0.0308 0.0279 0.0227
cosine_recall@1 0.175 0.1716 0.1602 0.1437 0.1107
cosine_recall@3 0.2484 0.2402 0.2276 0.2047 0.1595
cosine_recall@5 0.2762 0.272 0.2603 0.2331 0.1862
cosine_recall@10 0.3203 0.3162 0.3075 0.2794 0.2272
cosine_ndcg@10 0.2443 0.2395 0.2284 0.2057 0.1633
cosine_ndcg@15 0.2525 0.2464 0.2357 0.2141 0.17
cosine_ndcg@20 0.2574 0.2517 0.2405 0.2194 0.1746
cosine_mrr@10 0.2205 0.2155 0.2038 0.1829 0.1435
cosine_map@100 0.2276 0.2226 0.2108 0.1901 0.15

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 47,560 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 8 tokens
    • mean: 21.11 tokens
    • max: 45 tokens
    • min: 3 tokens
    • mean: 24.84 tokens
    • max: 108 tokens
  • Samples:
    anchor positive
    Quels sont les noms des fils de Schobal? Aljan, Manahath, Ébal, Schephi et Onam
    Quels sont les noms des fils de Tsibeon? Ajja et Ana
    Qui est le fils d'Ana? Dischon
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@20 dim_512_cosine_ndcg@20 dim_256_cosine_ndcg@20 dim_128_cosine_ndcg@20 dim_64_cosine_ndcg@20
0.0538 10 12.274 - - - - -
0.1076 20 11.5084 - - - - -
0.1615 30 10.5276 - - - - -
0.2153 40 9.0432 - - - - -
0.2691 50 7.572 - - - - -
0.3229 60 7.7696 - - - - -
0.3767 70 6.5673 - - - - -
0.4305 80 6.6586 - - - - -
0.4844 90 5.5276 - - - - -
0.5382 100 5.9891 - - - - -
0.5920 110 5.2983 - - - - -
0.6458 120 5.6242 - - - - -
0.6996 130 5.498 - - - - -
0.7534 140 4.4201 - - - - -
0.8073 150 4.3818 - - - - -
0.8611 160 4.2175 - - - - -
0.9149 170 4.2341 - - - - -
0.9687 180 4.3349 - - - - -
0.9956 185 - 0.2664 0.2607 0.2508 0.2263 0.1796
1.0269 190 4.6803 - - - - -
1.0807 200 3.877 - - - - -
1.1345 210 4.0309 - - - - -
1.1884 220 4.0755 - - - - -
1.2422 230 3.9068 - - - - -
1.2960 240 4.188 - - - - -
1.3498 250 4.3417 - - - - -
1.4036 260 4.0526 - - - - -
1.4575 270 3.3933 - - - - -
1.5113 280 3.8309 - - - - -
1.5651 290 3.5633 - - - - -
1.6189 300 3.8179 - - - - -
1.6727 310 4.0671 - - - - -
1.7265 320 3.3919 - - - - -
1.7804 330 2.6578 - - - - -
1.8342 340 2.6953 - - - - -
1.8880 350 2.8858 - - - - -
1.9418 360 2.8933 - - - - -
1.9956 370 2.9603 0.2775 0.2737 0.2637 0.2402 0.1916
2.0538 380 3.3361 - - - - -
2.1076 390 2.7904 - - - - -
2.1615 400 3.0108 - - - - -
2.2153 410 2.8917 - - - - -
2.2691 420 3.0295 - - - - -
2.3229 430 3.5609 - - - - -
2.3767 440 2.7722 - - - - -
2.4305 450 3.2115 - - - - -
2.4844 460 2.6333 - - - - -
2.5382 470 3.2503 - - - - -
2.5920 480 2.7708 - - - - -
2.6458 490 3.167 - - - - -
2.6996 500 3.1447 - - - - -
2.7534 510 2.0428 - - - - -
2.8073 520 2.0001 - - - - -
2.8611 530 2.0826 - - - - -
2.9149 540 2.0853 - - - - -
2.9687 550 2.2365 - - - - -
2.9956 555 - 0.2660 0.2604 0.2509 0.2266 0.1810
3.0269 560 2.762 - - - - -
3.0807 570 2.1219 - - - - -
3.1345 580 2.2908 - - - - -
3.1884 590 2.6195 - - - - -
3.2422 600 2.3468 - - - - -
3.2960 610 2.7504 - - - - -
3.3498 620 2.9486 - - - - -
3.4036 630 2.7281 - - - - -
3.4575 640 2.188 - - - - -
3.5113 650 2.5494 - - - - -
3.5651 660 2.426 - - - - -
3.6189 670 2.6478 - - - - -
3.6727 680 2.9209 - - - - -
3.7265 690 2.3512 - - - - -
3.7804 700 1.6746 - - - - -
3.8342 710 1.739 - - - - -
3.8880 720 1.951 - - - - -
3.9418 730 1.9886 - - - - -
3.9956 740 2.1022 0.2574 0.2517 0.2405 0.2194 0.1746
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.205 kWh
  • Carbon Emitted: 0.011 kg of CO2
  • Hours Used: 6.806 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce GTX 1660 Ti
  • CPU Model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
  • RAM Size: 7.68 GB

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1
  • Accelerate: 1.2.1
  • Datasets: 2.19.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}