Tito-7B-slerp / README.md
Stopwolf's picture
Update README.md
d44aaeb verified
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - gordicaleksa/YugoGPT
  - mlabonne/AlphaMonarch-7B
model-index:
  - name: Tito-7B-slerp
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 68.09
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 86.38
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.01
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 57.01
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 81.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.61
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard

Tito-7B-slerp

Tito-7B-slerp is a merge of the following models using mergekit:

🧩 Configuration

slices:
  - sources:
      - model: gordicaleksa/YugoGPT
        layer_range: [0, 32]
      - model: mlabonne/AlphaMonarch-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.6
dtype: bfloat16

Results

Evaluations on Serbian LLM eval suite (or rather, performance and knowledge of Serbian):

ARC-E ARC-C Hellaswag BoolQ Winogrande OpenbookQA PiQA NQ Open TriviaQA Avg.
Zamfir-7B 51.85 32.25 46.03 75.59 62.59 26.00 66.81 16.09 36.11 45.92
Mustra-7B 52.95 33.70 45.89 77.55 64.17 30.60 67.25 15.40 34.84 46.93
Tito-7B 55.43 34.73 48.19 77.37 65.27 30.00 67.30 16.7 35.38 47.82
YugoGPT 57.79 34.73 49.89 69.45 64.56 28.20 72.03 15.82 36.14 47.62

Here, all benchmarks were done 0-shot, on the exception of NQ Open and TriviaQA which were done in 5-shot manner, in order to be comparable to Mistral paper.

If we try to replicate OpenLLM Leaderboard results on available Serbian datasets (running an appropriate amount of shots instead of 0), we get:

ARC Hellaswag Winogrande TruthfulQA Avg.
Tito-7B 47.27 - 69.93 57.48 58.23
Perucac-7B 49.74 - 71.98 56.03 59.25
YugoGPT 44.03 - 70.64 48.06 54.24
Llama3-8B 42.24 - 61.25 51.08 51.52
SambaLingo 37.88 - 61.48 47.23 48.86

Note that YugoGPT, Llama3 and SambaLingo are all base models, unlike Tito and Perucac.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Tito YugoGPT
Avg. 70.13 57.34
AI2 Reasoning Challenge (25-Shot) 68.09 58.10
HellaSwag (10-Shot) 86.38 81.44
MMLU (5-Shot) 64.01 60.68
TruthfulQA (0-shot) 57.01 36.60
Winogrande (5-shot) 81.69 76.56
GSM8k (5-shot) 63.61 30.70