File size: 32,285 Bytes
7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 1725572 7e7ee15 1725572 7e7ee15 1725572 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 7e7ee15 9117f48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
"""
ESM++ model implementation.
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility
The ESM Python package is not required
Modified from https://github.com/evolutionaryscale/esm
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
"""
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from functools import cache, partial
from pathlib import Path
from typing import Optional, Tuple
from einops import rearrange, repeat
from huggingface_hub import snapshot_download
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.processors import TemplateProcessing
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
from transformers.modeling_outputs import ModelOutput
class ESMplusplusConfig(PretrainedConfig):
"""Configuration class for ESM++ model.
Args:
vocab_size: Size of the vocabulary
hidden_size: Dimension of hidden layers
num_attention_heads: Number of attention heads
num_hidden_layers: Number of transformer layers
num_labels: Number of output labels for classification
problem_type: Type of problem - regression, single/multi label classification
"""
model_type = "ESMplusplus"
def __init__(
self,
vocab_size: int = 64,
hidden_size: int = 960,
num_attention_heads: int = 15,
num_hidden_layers: int = 30,
num_labels: int = 2,
problem_type: str | None = None,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_labels = num_labels
self.problem_type = problem_type
### Rotary Embeddings
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
"""Rotates half the hidden dims of the input."""
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
)
def apply_rotary_emb_torch(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
interleaved: bool = False,
_inplace: bool = False,
) -> torch.Tensor:
"""Apply rotary embeddings to input based on cos and sin."""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
seqlen = x.size(1)
cos = cos[:seqlen]
sin = sin[:seqlen]
cos = repeat(cos, "s d -> s 1 (2 d)")
sin = repeat(sin, "s d -> s 1 (2 d)")
return torch.cat(
[
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
x[..., ro_dim:],
],
dim=-1,
)
class RotaryEmbedding(torch.nn.Module):
"""Rotary position embeddings.
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"
Args:
dim: Dimension of the embedding
base: Base for computing angular frequencies
interleaved: Whether to use interleaved rotations
scale_base: Base for scaling
scaling_factor: Factor for scaling positions
pos_idx_in_fp32: Whether to compute position indices in fp32
device: Computation device
"""
def __init__(
self,
dim: int,
base: float = 10000.0,
interleaved: bool = False,
scale_base: Optional[float] = None,
scaling_factor: float = 1.0,
pos_idx_in_fp32: bool = True,
device: Optional[torch.device] = None,
):
super().__init__()
self.dim = dim
self.base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.interleaved = interleaved
self.scale_base = scale_base
self.scaling_factor = scaling_factor
self.device = device
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
self.reset_parameters()
def reset_parameters(self):
"""Reset the parameters of the embedding."""
inv_freq = self._compute_inv_freq(self.device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
scale = (
(arange + 0.4 * self.dim) / (1.4 * self.dim)
if self.scale_base is not None
else None
)
self.register_buffer("scale", scale)
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
"""Compute inverse frequency bands."""
return 1 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
"""Update the cached cosine and sine values."""
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
t /= self.scaling_factor
if self.inv_freq.dtype != torch.float32:
inv_freq = self.inv_freq.to(torch.float32)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
t /= self.scaling_factor
inv_freq = self.inv_freq
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(
seqlen, dtype=self.scale.dtype, device=self.scale.device
)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply rotary embeddings to queries and keys.
Args:
q: Query tensor of shape (batch, seqlen, nheads, headdim)
k: Key tensor of shape (batch, seqlen, nheads, headdim)
Returns:
Tuple of rotated query and key tensors
"""
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
assert self._cos_cached is not None
assert self._sin_cached is not None
if self.scale is None:
return (
apply_rotary_emb_torch(
q,
self._cos_cached,
self._sin_cached,
self.interleaved,
True, # inplace=True
),
apply_rotary_emb_torch(
k,
self._cos_cached,
self._sin_cached,
self.interleaved,
True, # inplace=True
),
) # type: ignore
else:
assert False
### Feedforward Network Components
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
"""Compute corrected dimension for SwiGLU."""
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
class SwiGLU(nn.Module):
"""SwiGLU activation function."""
def __init__(self):
super(SwiGLU, self).__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(2, dim=-1)
return F.silu(x1) * x2
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
"""Create SwiGLU feedforward network with layer normalization."""
return nn.Sequential(
nn.LayerNorm(d_model),
nn.Linear(
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
),
SwiGLU(),
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
)
### Attention
class MultiHeadAttention(nn.Module):
"""Multi-head attention with rotary embeddings.
Args:
d_model: Model dimension
n_heads: Number of attention heads
"""
def __init__(self, d_model: int, n_heads: int):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.d_head = self.d_model // self.n_heads
self.layernorm_qkv = nn.Sequential(
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
)
self.out_proj = nn.Linear(d_model, d_model, bias=False)
self.q_ln = nn.LayerNorm(d_model, bias=False)
self.k_ln = nn.LayerNorm(d_model, bias=False)
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
self.rotary = RotaryEmbedding(d_model // n_heads)
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply rotary embeddings to query and key."""
q = q.unflatten(-1, (self.n_heads, self.d_head))
k = k.unflatten(-1, (self.n_heads, self.d_head))
q, k = self.rotary(q, k)
q = q.flatten(-2, -1)
k = k.flatten(-2, -1)
return q, k
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Args:
x: Input tensor
attention_mask: Optional attention mask
Returns:
Output tensor after self attention
"""
qkv_BLD3 = self.layernorm_qkv(x)
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
query_BLD, key_BLD = (
self.q_ln(query_BLD).to(query_BLD.dtype),
self.k_ln(key_BLD).to(query_BLD.dtype),
)
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
context_BHLD = F.scaled_dot_product_attention(
query_BHLD, key_BHLD, value_BHLD, attention_mask
)
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
return self.out_proj(context_BLD)
### Regression Head
def RegressionHead(
d_model: int, output_dim: int, hidden_dim: Optional[int] = None
) -> nn.Module:
"""Create a regression head with optional hidden dimension.
Args:
d_model: Input dimension
output_dim: Output dimension
hidden_dim: Optional hidden dimension (defaults to d_model)
"""
hidden_dim = hidden_dim if hidden_dim is not None else d_model
return nn.Sequential(
nn.Linear(d_model, hidden_dim),
nn.GELU(),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, output_dim),
)
### Transformer Block
class UnifiedTransformerBlock(nn.Module):
"""Transformer block with attention and feedforward layers.
Args:
d_model: Model dimension
n_heads: Number of attention heads
residue_scaling_factor: Factor for scaling residual connections
expansion_ratio: Expansion ratio for feedforward network
"""
def __init__(
self,
d_model: int,
n_heads: int,
residue_scaling_factor: float = 1,
expansion_ratio: float = 8 / 3,
):
super().__init__()
self.attn = MultiHeadAttention(d_model, n_heads)
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
self.scaling_factor = residue_scaling_factor
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
x: Input tensor
attention_mask: Optional attention mask
Returns:
Output tensor after transformer block
"""
r1 = self.attn(x, attention_mask)
x = x + r1 / self.scaling_factor
r3 = self.ffn(x) / self.scaling_factor
x = x + r3
return x
### Model Outputs
@dataclass
class TransformerOutput(ModelOutput):
"""Output type for transformer encoder."""
last_hidden_state: Optional[torch.Tensor] = None
hidden_states: Optional[Tuple[torch.Tensor]] = None
@dataclass
class ESMplusplusOutput(ModelOutput):
"""Output type for ESM++ models."""
loss: Optional[torch.Tensor] = None
logits: Optional[torch.Tensor] = None
last_hidden_state: Optional[torch.Tensor] = None
hidden_states: Optional[Tuple[torch.Tensor]] = None
### Transformer Stack
class TransformerStack(nn.Module):
"""Stack of transformer blocks.
Args:
d_model: Model dimension
n_heads: Number of attention heads
n_layers: Number of transformer layers
"""
def __init__(
self,
d_model: int,
n_heads: int,
n_layers: int,
):
super().__init__()
self.blocks = nn.ModuleList(
[
UnifiedTransformerBlock(
d_model,
n_heads,
residue_scaling_factor=math.sqrt(n_layers / 36),
)
for i in range(n_layers)
]
)
self.norm = nn.LayerNorm(d_model, bias=False)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> TransformerOutput:
"""
Args:
x: Input tensor
attention_mask: Optional attention mask
output_hidden_states: Whether to return all hidden states
Returns:
TransformerOutput containing last hidden state and optionally all hidden states
"""
batch_size, seq_len, _ = x.shape
hidden_states = ()
if attention_mask is not None:
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
for block in self.blocks:
x = block(x, attention_mask)
if output_hidden_states:
hidden_states += (x,)
return TransformerOutput(last_hidden_state=self.norm(x), hidden_states=hidden_states)
### Dataset for Embedding
class ProteinDataset(Dataset):
"""Simple dataset for protein sequences."""
def __init__(self, sequences: list[str]):
self.sequences = sequences
def __len__(self) -> int:
return len(self.sequences)
def __getitem__(self, idx: int) -> str:
return self.sequences[idx]
### ESM++ Models
class ESMplusplusForMaskedLM(PreTrainedModel):
"""ESM++ model for masked language modeling.
Implements the base ESM++ architecture with a masked language modeling head.
"""
config_class = ESMplusplusConfig
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.vocab_size = config.vocab_size
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers)
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
self.ce_loss = nn.CrossEntropyLoss()
self.tokenizer = EsmSequenceTokenizer()
@classmethod
def from_pretrained_esm(cls, model_name: str) -> "ESMplusplusForMaskedLM":
"""Load a pretrained ESM++ model."""
if '300' in model_name:
return ESMplusplus_300M()
elif '600' in model_name:
return ESMplusplus_600M()
else:
raise ValueError(f"Invalid model name: {model_name}")
@property
def device(self) -> torch.device:
"""Get the device of the model."""
return next(self.parameters()).device
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Apply mean pooling to sequence outputs."""
if attention_mask is None:
return x.mean(dim=1)
else:
attention_mask = attention_mask.unsqueeze(-1)
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
"""Collate function for batching sequences."""
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
def _read_sequences_from_db(self, db_path: str) -> set[str]:
"""Read sequences from SQLite database."""
import sqlite3
sequences = []
with sqlite3.connect(db_path) as conn:
c = conn.cursor()
c.execute("SELECT sequence FROM embeddings")
while True:
row = c.fetchone()
if row is None:
break
sequences.append(row[0])
return set(sequences)
def embed_dataset(
self,
sequences: list[str],
batch_size: int = 2,
max_len: int = 512,
full_embeddings: bool = False,
full_precision: bool = False,
pooling_type: str = 'mean',
num_workers: int = 0,
sql: bool = False,
sql_db_path: str = 'embeddings.db',
) -> Optional[dict[str, torch.Tensor]]:
"""Embed a dataset of protein sequences.
Args:
sequences: List of protein sequences
batch_size: Batch size for processing
max_len: Maximum sequence length
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage
pooling_type: Type of pooling ('mean' or 'cls')
num_workers: Number of workers for data loading, 0 for the main process
sql: Whether to store embeddings in SQLite database - will be stored in float32
sql_db_path: Path to SQLite database
Returns:
Dictionary mapping sequences to embeddings, or None if sql=True
"""
sequences = list(set([seq[:max_len] for seq in sequences]))
sequences = sorted(sequences, key=len, reverse=True)
dataset = ProteinDataset(sequences)
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn)
device = self.device
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
if full_embeddings:
return residue_embeddings
elif pooling_type == 'mean':
return self.mean_pooling(residue_embeddings, attention_mask)
else:
return residue_embeddings[:, 0, :]
if sql:
import sqlite3
conn = sqlite3.connect(sql_db_path)
c = conn.cursor()
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
already_embedded = self._read_sequences_from_db(sql_db_path)
to_embed = [seq for seq in sequences if seq not in already_embedded]
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
print(f"Embedding {len(to_embed)} new sequences")
with torch.no_grad():
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
seqs = sequences[i * batch_size:(i + 1) * batch_size]
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
x = self.embed(input_ids)
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql
embeddings = get_embeddings(residue_embeddings, attention_mask)
for seq, emb in zip(seqs, embeddings):
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
(seq, emb.cpu().numpy().tobytes()))
if (i + 1) % 100 == 0:
conn.commit()
conn.commit()
conn.close()
return None
embeddings_dict = {}
with torch.no_grad():
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
seqs = sequences[i * batch_size:(i + 1) * batch_size]
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
x = self.embed(input_ids)
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach()
if full_precision:
residue_embeddings = residue_embeddings.float()
embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
for seq, emb in zip(seqs, embeddings):
embeddings_dict[seq] = emb
return embeddings_dict
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
"""Forward pass for masked language modeling.
Args:
input_ids: Input token IDs
attention_mask: Attention mask
labels: Optional labels for masked tokens
output_hidden_states: Whether to return all hidden states
Returns:
ESMplusplusOutput containing loss, logits, and hidden states
"""
x = self.embed(input_ids)
output = self.transformer(x, attention_mask, output_hidden_states)
x = output.last_hidden_state
logits = self.sequence_head(x)
loss = None
if labels is not None:
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
"""ESM++ model for sequence classification.
Extends the base ESM++ model with a classification head.
"""
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
# Large intermediate projections help with sequence classification tasks (*4)
self.mse = nn.MSELoss()
self.ce = nn.CrossEntropyLoss()
self.bce = nn.BCEWithLogitsLoss()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
"""Forward pass for sequence classification.
Args:
input_ids: Input token IDs
attention_mask: Attention mask
labels: Optional labels for classification
output_hidden_states: Whether to return all hidden states
Returns:
ESMplusplusOutput containing loss, logits, and hidden states
"""
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
x = output.last_hidden_state
cls_features = x[:, 0, :]
mean_features = self.mean_pooling(x, attention_mask)
# we include mean pooling features to help with early convergence, the cost of this is basically zero
features = torch.cat([cls_features, mean_features], dim=-1)
logits = self.classifier(features)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
if self.num_labels == 1:
loss = self.mse(logits.flatten(), labels.flatten())
else:
loss = self.mse(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss = self.bce(logits, labels)
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
"""ESM++ model for token classification.
Extends the base ESM++ model with a token classification head.
"""
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
# Large intermediate projections help with sequence classification tasks (*4)
self.loss_fct = nn.CrossEntropyLoss()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
"""Forward pass for token classification.
Args:
input_ids: Input token IDs
attention_mask: Attention mask
labels: Optional labels for token classification
output_hidden_states: Whether to return all hidden states
Returns:
ESMplusplusOutput containing loss, logits, and hidden states
"""
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
x = output.last_hidden_state
logits = self.classifier(x)
loss = None
if labels is not None:
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
### Loading from EvolutionaryScale
@staticmethod
@cache
def data_root(model: str):
if "INFRA_PROVIDER" in os.environ:
return Path("")
# Try to download from hugginface if it doesn't exist
if model.startswith("esmc-300"):
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
elif model.startswith("esmc-600"):
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
else:
raise ValueError(f"{model=} is an invalid model name.")
return path
def ESMplusplus_300M(device: torch.device | str = "cpu"):
with torch.device(device):
config = ESMplusplusConfig(
hidden_size=960,
num_attention_heads=15,
num_hidden_layers=30,
)
model = ESMplusplusForMaskedLM(config)
state_dict = torch.load(
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
map_location=device,
)
model.load_state_dict(state_dict)
return model
def ESMplusplus_600M(device: torch.device | str = "cpu"):
with torch.device(device):
config = ESMplusplusConfig(
hidden_size=1152,
num_attention_heads=18,
num_hidden_layers=36,
)
model = ESMplusplusForMaskedLM(config)
state_dict = torch.load(
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
map_location=device,
)
model.load_state_dict(state_dict)
return model
### Tokenization
SEQUENCE_VOCAB = [
"<cls>", "<pad>", "<eos>", "<unk>",
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
"O", ".", "-", "|",
"<mask>",
]
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
unk_token="<unk>",
cls_token="<cls>",
pad_token="<pad>",
mask_token="<mask>",
eos_token="<eos>",
chain_break_token="|",
**kwargs,
):
all_tokens = SEQUENCE_VOCAB
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
# a character-level tokenizer is the same as BPE with no token merges
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
tokenizer = Tokenizer(bpe)
special_tokens = [
cls_token,
pad_token,
mask_token,
eos_token,
chain_break_token,
]
self.cb_token = chain_break_token
additional_special_tokens = [chain_break_token]
tokenizer.add_special_tokens(special_tokens)
# This is where we configure the automatic addition of special tokens when we call
# tokenizer(text, add_special_tokens=True). Note that you can also configure how two
# sequences are merged if you want.
tokenizer.post_processor = TemplateProcessing( # type: ignore
single="<cls> $A <eos>",
special_tokens=[
("<cls>", tokenizer.token_to_id("<cls>")),
("<eos>", tokenizer.token_to_id("<eos>")),
],
)
super().__init__(
tokenizer_object=tokenizer,
unk_token=unk_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
eos_token=eos_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
# These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
@property
def bos_token(self):
return self.cls_token
@property
def bos_token_id(self):
return self.cls_token_id
@property
def chain_break_token(self):
return self.cb_token
@property
def chain_break_token_id(self):
return self.convert_tokens_to_ids(self.chain_break_token)
@property
def all_token_ids(self):
return list(range(self.vocab_size))
@property
def special_token_ids(self):
return self.all_special_ids
|