ESMplusplus_large / modeling_esm_plusplus.py
lhallee's picture
Update modeling_esm_plusplus.py
1725572 verified
raw
history blame
32.3 kB
"""
ESM++ model implementation.
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility
The ESM Python package is not required
Modified from https://github.com/evolutionaryscale/esm
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
"""
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from functools import cache, partial
from pathlib import Path
from typing import Optional, Tuple
from einops import rearrange, repeat
from huggingface_hub import snapshot_download
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.processors import TemplateProcessing
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
from transformers.modeling_outputs import ModelOutput
class ESMplusplusConfig(PretrainedConfig):
"""Configuration class for ESM++ model.
Args:
vocab_size: Size of the vocabulary
hidden_size: Dimension of hidden layers
num_attention_heads: Number of attention heads
num_hidden_layers: Number of transformer layers
num_labels: Number of output labels for classification
problem_type: Type of problem - regression, single/multi label classification
"""
model_type = "ESMplusplus"
def __init__(
self,
vocab_size: int = 64,
hidden_size: int = 960,
num_attention_heads: int = 15,
num_hidden_layers: int = 30,
num_labels: int = 2,
problem_type: str | None = None,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_labels = num_labels
self.problem_type = problem_type
### Rotary Embeddings
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
"""Rotates half the hidden dims of the input."""
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
)
def apply_rotary_emb_torch(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
interleaved: bool = False,
_inplace: bool = False,
) -> torch.Tensor:
"""Apply rotary embeddings to input based on cos and sin."""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
seqlen = x.size(1)
cos = cos[:seqlen]
sin = sin[:seqlen]
cos = repeat(cos, "s d -> s 1 (2 d)")
sin = repeat(sin, "s d -> s 1 (2 d)")
return torch.cat(
[
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
x[..., ro_dim:],
],
dim=-1,
)
class RotaryEmbedding(torch.nn.Module):
"""Rotary position embeddings.
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"
Args:
dim: Dimension of the embedding
base: Base for computing angular frequencies
interleaved: Whether to use interleaved rotations
scale_base: Base for scaling
scaling_factor: Factor for scaling positions
pos_idx_in_fp32: Whether to compute position indices in fp32
device: Computation device
"""
def __init__(
self,
dim: int,
base: float = 10000.0,
interleaved: bool = False,
scale_base: Optional[float] = None,
scaling_factor: float = 1.0,
pos_idx_in_fp32: bool = True,
device: Optional[torch.device] = None,
):
super().__init__()
self.dim = dim
self.base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.interleaved = interleaved
self.scale_base = scale_base
self.scaling_factor = scaling_factor
self.device = device
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
self.reset_parameters()
def reset_parameters(self):
"""Reset the parameters of the embedding."""
inv_freq = self._compute_inv_freq(self.device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
scale = (
(arange + 0.4 * self.dim) / (1.4 * self.dim)
if self.scale_base is not None
else None
)
self.register_buffer("scale", scale)
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
"""Compute inverse frequency bands."""
return 1 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
"""Update the cached cosine and sine values."""
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
t /= self.scaling_factor
if self.inv_freq.dtype != torch.float32:
inv_freq = self.inv_freq.to(torch.float32)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
t /= self.scaling_factor
inv_freq = self.inv_freq
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(
seqlen, dtype=self.scale.dtype, device=self.scale.device
)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply rotary embeddings to queries and keys.
Args:
q: Query tensor of shape (batch, seqlen, nheads, headdim)
k: Key tensor of shape (batch, seqlen, nheads, headdim)
Returns:
Tuple of rotated query and key tensors
"""
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
assert self._cos_cached is not None
assert self._sin_cached is not None
if self.scale is None:
return (
apply_rotary_emb_torch(
q,
self._cos_cached,
self._sin_cached,
self.interleaved,
True, # inplace=True
),
apply_rotary_emb_torch(
k,
self._cos_cached,
self._sin_cached,
self.interleaved,
True, # inplace=True
),
) # type: ignore
else:
assert False
### Feedforward Network Components
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
"""Compute corrected dimension for SwiGLU."""
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
class SwiGLU(nn.Module):
"""SwiGLU activation function."""
def __init__(self):
super(SwiGLU, self).__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(2, dim=-1)
return F.silu(x1) * x2
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
"""Create SwiGLU feedforward network with layer normalization."""
return nn.Sequential(
nn.LayerNorm(d_model),
nn.Linear(
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
),
SwiGLU(),
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
)
### Attention
class MultiHeadAttention(nn.Module):
"""Multi-head attention with rotary embeddings.
Args:
d_model: Model dimension
n_heads: Number of attention heads
"""
def __init__(self, d_model: int, n_heads: int):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.d_head = self.d_model // self.n_heads
self.layernorm_qkv = nn.Sequential(
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
)
self.out_proj = nn.Linear(d_model, d_model, bias=False)
self.q_ln = nn.LayerNorm(d_model, bias=False)
self.k_ln = nn.LayerNorm(d_model, bias=False)
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
self.rotary = RotaryEmbedding(d_model // n_heads)
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply rotary embeddings to query and key."""
q = q.unflatten(-1, (self.n_heads, self.d_head))
k = k.unflatten(-1, (self.n_heads, self.d_head))
q, k = self.rotary(q, k)
q = q.flatten(-2, -1)
k = k.flatten(-2, -1)
return q, k
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Args:
x: Input tensor
attention_mask: Optional attention mask
Returns:
Output tensor after self attention
"""
qkv_BLD3 = self.layernorm_qkv(x)
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
query_BLD, key_BLD = (
self.q_ln(query_BLD).to(query_BLD.dtype),
self.k_ln(key_BLD).to(query_BLD.dtype),
)
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
context_BHLD = F.scaled_dot_product_attention(
query_BHLD, key_BHLD, value_BHLD, attention_mask
)
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
return self.out_proj(context_BLD)
### Regression Head
def RegressionHead(
d_model: int, output_dim: int, hidden_dim: Optional[int] = None
) -> nn.Module:
"""Create a regression head with optional hidden dimension.
Args:
d_model: Input dimension
output_dim: Output dimension
hidden_dim: Optional hidden dimension (defaults to d_model)
"""
hidden_dim = hidden_dim if hidden_dim is not None else d_model
return nn.Sequential(
nn.Linear(d_model, hidden_dim),
nn.GELU(),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, output_dim),
)
### Transformer Block
class UnifiedTransformerBlock(nn.Module):
"""Transformer block with attention and feedforward layers.
Args:
d_model: Model dimension
n_heads: Number of attention heads
residue_scaling_factor: Factor for scaling residual connections
expansion_ratio: Expansion ratio for feedforward network
"""
def __init__(
self,
d_model: int,
n_heads: int,
residue_scaling_factor: float = 1,
expansion_ratio: float = 8 / 3,
):
super().__init__()
self.attn = MultiHeadAttention(d_model, n_heads)
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
self.scaling_factor = residue_scaling_factor
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
x: Input tensor
attention_mask: Optional attention mask
Returns:
Output tensor after transformer block
"""
r1 = self.attn(x, attention_mask)
x = x + r1 / self.scaling_factor
r3 = self.ffn(x) / self.scaling_factor
x = x + r3
return x
### Model Outputs
@dataclass
class TransformerOutput(ModelOutput):
"""Output type for transformer encoder."""
last_hidden_state: Optional[torch.Tensor] = None
hidden_states: Optional[Tuple[torch.Tensor]] = None
@dataclass
class ESMplusplusOutput(ModelOutput):
"""Output type for ESM++ models."""
loss: Optional[torch.Tensor] = None
logits: Optional[torch.Tensor] = None
last_hidden_state: Optional[torch.Tensor] = None
hidden_states: Optional[Tuple[torch.Tensor]] = None
### Transformer Stack
class TransformerStack(nn.Module):
"""Stack of transformer blocks.
Args:
d_model: Model dimension
n_heads: Number of attention heads
n_layers: Number of transformer layers
"""
def __init__(
self,
d_model: int,
n_heads: int,
n_layers: int,
):
super().__init__()
self.blocks = nn.ModuleList(
[
UnifiedTransformerBlock(
d_model,
n_heads,
residue_scaling_factor=math.sqrt(n_layers / 36),
)
for i in range(n_layers)
]
)
self.norm = nn.LayerNorm(d_model, bias=False)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> TransformerOutput:
"""
Args:
x: Input tensor
attention_mask: Optional attention mask
output_hidden_states: Whether to return all hidden states
Returns:
TransformerOutput containing last hidden state and optionally all hidden states
"""
batch_size, seq_len, _ = x.shape
hidden_states = ()
if attention_mask is not None:
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
for block in self.blocks:
x = block(x, attention_mask)
if output_hidden_states:
hidden_states += (x,)
return TransformerOutput(last_hidden_state=self.norm(x), hidden_states=hidden_states)
### Dataset for Embedding
class ProteinDataset(Dataset):
"""Simple dataset for protein sequences."""
def __init__(self, sequences: list[str]):
self.sequences = sequences
def __len__(self) -> int:
return len(self.sequences)
def __getitem__(self, idx: int) -> str:
return self.sequences[idx]
### ESM++ Models
class ESMplusplusForMaskedLM(PreTrainedModel):
"""ESM++ model for masked language modeling.
Implements the base ESM++ architecture with a masked language modeling head.
"""
config_class = ESMplusplusConfig
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.vocab_size = config.vocab_size
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers)
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
self.ce_loss = nn.CrossEntropyLoss()
self.tokenizer = EsmSequenceTokenizer()
@classmethod
def from_pretrained_esm(cls, model_name: str) -> "ESMplusplusForMaskedLM":
"""Load a pretrained ESM++ model."""
if '300' in model_name:
return ESMplusplus_300M()
elif '600' in model_name:
return ESMplusplus_600M()
else:
raise ValueError(f"Invalid model name: {model_name}")
@property
def device(self) -> torch.device:
"""Get the device of the model."""
return next(self.parameters()).device
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Apply mean pooling to sequence outputs."""
if attention_mask is None:
return x.mean(dim=1)
else:
attention_mask = attention_mask.unsqueeze(-1)
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
"""Collate function for batching sequences."""
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
def _read_sequences_from_db(self, db_path: str) -> set[str]:
"""Read sequences from SQLite database."""
import sqlite3
sequences = []
with sqlite3.connect(db_path) as conn:
c = conn.cursor()
c.execute("SELECT sequence FROM embeddings")
while True:
row = c.fetchone()
if row is None:
break
sequences.append(row[0])
return set(sequences)
def embed_dataset(
self,
sequences: list[str],
batch_size: int = 2,
max_len: int = 512,
full_embeddings: bool = False,
full_precision: bool = False,
pooling_type: str = 'mean',
num_workers: int = 0,
sql: bool = False,
sql_db_path: str = 'embeddings.db',
) -> Optional[dict[str, torch.Tensor]]:
"""Embed a dataset of protein sequences.
Args:
sequences: List of protein sequences
batch_size: Batch size for processing
max_len: Maximum sequence length
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage
pooling_type: Type of pooling ('mean' or 'cls')
num_workers: Number of workers for data loading, 0 for the main process
sql: Whether to store embeddings in SQLite database - will be stored in float32
sql_db_path: Path to SQLite database
Returns:
Dictionary mapping sequences to embeddings, or None if sql=True
"""
sequences = list(set([seq[:max_len] for seq in sequences]))
sequences = sorted(sequences, key=len, reverse=True)
dataset = ProteinDataset(sequences)
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn)
device = self.device
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
if full_embeddings:
return residue_embeddings
elif pooling_type == 'mean':
return self.mean_pooling(residue_embeddings, attention_mask)
else:
return residue_embeddings[:, 0, :]
if sql:
import sqlite3
conn = sqlite3.connect(sql_db_path)
c = conn.cursor()
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
already_embedded = self._read_sequences_from_db(sql_db_path)
to_embed = [seq for seq in sequences if seq not in already_embedded]
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
print(f"Embedding {len(to_embed)} new sequences")
with torch.no_grad():
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
seqs = sequences[i * batch_size:(i + 1) * batch_size]
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
x = self.embed(input_ids)
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql
embeddings = get_embeddings(residue_embeddings, attention_mask)
for seq, emb in zip(seqs, embeddings):
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
(seq, emb.cpu().numpy().tobytes()))
if (i + 1) % 100 == 0:
conn.commit()
conn.commit()
conn.close()
return None
embeddings_dict = {}
with torch.no_grad():
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
seqs = sequences[i * batch_size:(i + 1) * batch_size]
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
x = self.embed(input_ids)
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach()
if full_precision:
residue_embeddings = residue_embeddings.float()
embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
for seq, emb in zip(seqs, embeddings):
embeddings_dict[seq] = emb
return embeddings_dict
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
"""Forward pass for masked language modeling.
Args:
input_ids: Input token IDs
attention_mask: Attention mask
labels: Optional labels for masked tokens
output_hidden_states: Whether to return all hidden states
Returns:
ESMplusplusOutput containing loss, logits, and hidden states
"""
x = self.embed(input_ids)
output = self.transformer(x, attention_mask, output_hidden_states)
x = output.last_hidden_state
logits = self.sequence_head(x)
loss = None
if labels is not None:
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
"""ESM++ model for sequence classification.
Extends the base ESM++ model with a classification head.
"""
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
# Large intermediate projections help with sequence classification tasks (*4)
self.mse = nn.MSELoss()
self.ce = nn.CrossEntropyLoss()
self.bce = nn.BCEWithLogitsLoss()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
"""Forward pass for sequence classification.
Args:
input_ids: Input token IDs
attention_mask: Attention mask
labels: Optional labels for classification
output_hidden_states: Whether to return all hidden states
Returns:
ESMplusplusOutput containing loss, logits, and hidden states
"""
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
x = output.last_hidden_state
cls_features = x[:, 0, :]
mean_features = self.mean_pooling(x, attention_mask)
# we include mean pooling features to help with early convergence, the cost of this is basically zero
features = torch.cat([cls_features, mean_features], dim=-1)
logits = self.classifier(features)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
if self.num_labels == 1:
loss = self.mse(logits.flatten(), labels.flatten())
else:
loss = self.mse(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss = self.bce(logits, labels)
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
"""ESM++ model for token classification.
Extends the base ESM++ model with a token classification head.
"""
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
# Large intermediate projections help with sequence classification tasks (*4)
self.loss_fct = nn.CrossEntropyLoss()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
"""Forward pass for token classification.
Args:
input_ids: Input token IDs
attention_mask: Attention mask
labels: Optional labels for token classification
output_hidden_states: Whether to return all hidden states
Returns:
ESMplusplusOutput containing loss, logits, and hidden states
"""
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
x = output.last_hidden_state
logits = self.classifier(x)
loss = None
if labels is not None:
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
### Loading from EvolutionaryScale
@staticmethod
@cache
def data_root(model: str):
if "INFRA_PROVIDER" in os.environ:
return Path("")
# Try to download from hugginface if it doesn't exist
if model.startswith("esmc-300"):
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
elif model.startswith("esmc-600"):
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
else:
raise ValueError(f"{model=} is an invalid model name.")
return path
def ESMplusplus_300M(device: torch.device | str = "cpu"):
with torch.device(device):
config = ESMplusplusConfig(
hidden_size=960,
num_attention_heads=15,
num_hidden_layers=30,
)
model = ESMplusplusForMaskedLM(config)
state_dict = torch.load(
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
map_location=device,
)
model.load_state_dict(state_dict)
return model
def ESMplusplus_600M(device: torch.device | str = "cpu"):
with torch.device(device):
config = ESMplusplusConfig(
hidden_size=1152,
num_attention_heads=18,
num_hidden_layers=36,
)
model = ESMplusplusForMaskedLM(config)
state_dict = torch.load(
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
map_location=device,
)
model.load_state_dict(state_dict)
return model
### Tokenization
SEQUENCE_VOCAB = [
"<cls>", "<pad>", "<eos>", "<unk>",
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
"O", ".", "-", "|",
"<mask>",
]
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
unk_token="<unk>",
cls_token="<cls>",
pad_token="<pad>",
mask_token="<mask>",
eos_token="<eos>",
chain_break_token="|",
**kwargs,
):
all_tokens = SEQUENCE_VOCAB
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
# a character-level tokenizer is the same as BPE with no token merges
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
tokenizer = Tokenizer(bpe)
special_tokens = [
cls_token,
pad_token,
mask_token,
eos_token,
chain_break_token,
]
self.cb_token = chain_break_token
additional_special_tokens = [chain_break_token]
tokenizer.add_special_tokens(special_tokens)
# This is where we configure the automatic addition of special tokens when we call
# tokenizer(text, add_special_tokens=True). Note that you can also configure how two
# sequences are merged if you want.
tokenizer.post_processor = TemplateProcessing( # type: ignore
single="<cls> $A <eos>",
special_tokens=[
("<cls>", tokenizer.token_to_id("<cls>")),
("<eos>", tokenizer.token_to_id("<eos>")),
],
)
super().__init__(
tokenizer_object=tokenizer,
unk_token=unk_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
eos_token=eos_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
# These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
@property
def bos_token(self):
return self.cls_token
@property
def bos_token_id(self):
return self.cls_token_id
@property
def chain_break_token(self):
return self.cb_token
@property
def chain_break_token_id(self):
return self.convert_tokens_to_ids(self.chain_break_token)
@property
def all_token_ids(self):
return list(range(self.vocab_size))
@property
def special_token_ids(self):
return self.all_special_ids