SentenceTransformer based on shibing624/text2vec-base-multilingual

This is a sentence-transformers model finetuned from shibing624/text2vec-base-multilingual. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: shibing624/text2vec-base-multilingual
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("T-Blue/tsdae_pro_text2vec")
# Run inference
sentences = [
    '𑀠चपच𑀞𑀢𑀟 पच𑀟च ढनबच 𑀱च 𑀟च𑀠ध𑁣ल लच𑀣𑀢𑁦𑀳 𑀲त पच 𑀱च𑀳च𑀯',
    ' च 𑀠चपच𑀞𑀢𑀟 𑀞नल𑁣ढ पच𑀟च ढनबच 𑀱च 𑀞𑁣𑀠च𑀳 𑀟च𑀠ध𑁣ल लच𑀣𑀢𑁦𑀳 𑀲त पच 𑀟च𑀠𑀢ढ𑀢च 𑀱च𑀳च𑀯',
    ' णच𑀟𑀞न𑀟च𑀟 बन𑀟𑀣न𑀠च𑀪 𑀘𑀣𑁦ण𑀣𑁦𑀫 ब𑀢𑀣च 𑀟𑁦 बच ब𑀢𑀣च𑀘𑁦 𑀠च𑀳न णच𑀱च 𑀟च झच𑀪𑀟𑀢 𑀟च 𑀭𑁢 𑀣च 𑀟च 𑀭𑀬 𑀟च चल𑁦धध𑀢𑀟 ढ𑁣न𑀪ब𑁦𑁣𑀢𑀳𑀢𑁦𑀦 𑀱चञच𑀟𑀣च 𑀞𑁦 ञचन𑀞𑁦 𑀣च 𑀤च𑀟𑁦𑀟 𑀣नप𑀳𑁦𑀯',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 64,000 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 3 tokens
    • mean: 37.42 tokens
    • max: 342 tokens
    • min: 4 tokens
    • mean: 89.84 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1
    𑀠नपच𑀟𑁦𑀫च𑀢𑀫न𑀱च𑀟 𑀭थथ𑀬𑀯 𑀞𑀢𑀣𑀢𑀣𑀣𑀢बच𑀪 𑀳च𑀟च𑀙च𑀞नल𑁣ढझच𑀳च𑀳𑀫𑁦𑀟 𑀣न𑀟𑀢णच𑀠च𑀟च𑀤च𑀪पच 𑀪चणचणणन𑀟 𑀠नपच𑀟𑁦𑀫च𑀢𑀫न𑀱च𑀟 𑀭थथ𑀬𑀯
    च 𑀱च𑀘𑁦𑀟 𑀘च𑀠भ𑀢णणच 𑀠च𑀢 𑀞𑀢𑀳𑀫𑀢𑀟 पच बच𑀳𑀞𑀢णच𑀯 𑀘च𑀠भ𑀢णणच𑀪 च ल𑁣𑀞चत𑀢𑀟 𑀢पच त𑁦 पच ढ𑀢णन 𑀣च पच ण𑀢 𑀟च𑀠𑀢𑀘𑀢𑀟 𑀞𑁣𑀞च𑀪𑀢 𑀱च𑀘𑁦𑀟 𑀳च𑀠च𑀪 𑀣च 𑀘च𑀠भ𑀢णणच 𑀠च𑀢 𑀞𑀢𑀳𑀫𑀢𑀟 𑀞च𑀳च पच बच𑀳𑀞𑀢णच𑀯
    𑀯 𑀯
  • Loss: DenoisingAutoEncoderLoss

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.125 500 4.0592
0.25 1000 1.6454
0.375 1500 1.4774
0.5 2000 1.4131
0.625 2500 1.3766
0.75 3000 1.3488
0.875 3500 1.3252
1.0 4000 1.3087
1.125 4500 1.2931
1.25 5000 1.2772
1.375 5500 1.2655
1.5 6000 1.2535
1.625 6500 1.243
1.75 7000 1.2305
1.875 7500 1.223
2.0 8000 1.216
2.125 8500 1.2073
2.25 9000 1.1999
2.375 9500 1.1935
2.5 10000 1.1872
2.625 10500 1.1804
2.75 11000 1.17
2.875 11500 1.167
3.0 12000 1.1623

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.18.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

DenoisingAutoEncoderLoss

@inproceedings{wang-2021-TSDAE,
    title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
    author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", 
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    pages = "671--688",
    url = "https://arxiv.org/abs/2104.06979",
}
Downloads last month
5
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for T-Blue/tsdae_pro_text2vec

Finetuned
(2)
this model