T-Blue commited on
Commit
0da0085
·
verified ·
1 Parent(s): 14b2348

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: shibing624/text2vec-base-multilingual
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:64000
13
+ - loss:DenoisingAutoEncoderLoss
14
+ widget:
15
+ - source_sentence: च बच 𑀱चपच𑀟 पच पच 𑀙णच𑀪 𑀱च𑀳च 𑀠च𑀢 𑀳𑀫𑁦𑀞च𑀪न𑀣च पच 𑀞𑀱चलल𑁣 पच𑀪𑀢𑀫𑀢𑀟 ल𑁣𑀞चत𑀢𑀟
16
+ 𑀱च𑀳च𑀟 𑀳च𑀠न 𑀟च𑀳च𑀪च 𑀱च𑀟𑀣च च ल𑁦खच𑀟प𑁦 लच𑀳 धलच𑀟च𑀳 𑀣𑀢ख𑀢𑀳𑀢𑀨𑀟
17
+ sentences:
18
+ - ' च𑀟 पच𑀟पच𑀟त𑁦 पच च 𑀠चप𑀳चण𑀢𑀟 गणच𑀪 पच𑀞च𑀪च𑀪 𑁦च𑀳पल𑁦𑀢ब𑀫 च 𑀤चढ𑁦𑀟 𑀲𑀢𑀣𑀣च ब𑀱च𑀟𑀢 𑀟च 𑀳𑀫𑁦𑀞च𑀪च𑀪
19
+ 𑀭थथर च𑀠𑀠च पच 𑀳𑀫च 𑀞चण𑁦 च 𑀤चढ𑁦𑀟𑀯'
20
+ - ' च 𑀪च𑀟च𑀪 ठ𑀖 बच 𑀱चपच𑀟 𑀘च𑀟च𑀢𑀪न च 𑀳𑀫𑁦𑀞च𑀪च𑀪 ठ𑀧ठ𑀰 पच 𑀞च𑀲च पच𑀪𑀢𑀫𑀢 पच 𑀤च𑀠च 𑀠चपच𑀳𑀫𑀢णच𑀪
21
+ 𑀙णच𑀪 𑀱च𑀳च 𑀠च𑀢 𑀞च𑀪च𑀟त𑀢𑀟 𑀳𑀫𑁦𑀞च𑀪न𑀣च पच त𑀢 𑀞𑀱चलल𑁣 च पच𑀪𑀢𑀫𑀢𑀟 ढच𑀪तच ल𑁣𑀞चत𑀢𑀟 𑀣च पच त𑀢
22
+ च 𑀱च𑀳च𑀟 𑀣च 𑀳न𑀞च 𑀳च𑀠न 𑀟च𑀳च𑀪च 𑀱च𑀟𑀣च 𑀞न𑀟ब𑀢णच𑀪 पच ढच𑀪त𑁦ल𑁣𑀟च 𑀬ष𑀧 च 𑀞च𑀟 ल𑁦खच𑀟प𑁦 लच𑀳
23
+ धलच𑀟च𑀳 च 𑀱च𑀳च𑀟 ध𑀪𑀢𑀠𑁦𑀪च 𑀣𑀢ख𑀢𑀳𑀢𑀨𑀟 𑀯'
24
+ - ' च 𑀞च𑀞च𑀪 𑀱च𑀳च𑀟𑀳च 𑀟च ढ𑀢णन च त𑀢𑀞𑀢𑀟 ठ𑀧ठ𑀭𑀦 णच 𑀤च𑀠च 𑀣च𑀟 𑀱च𑀳च च 𑀞नल𑁣ढ 𑀣𑀢𑀟 𑀞न𑀠च णच
25
+ पच𑀢𑀠च𑀞च 𑀠न𑀳न 𑀳न𑀟 त𑀢 𑁦पपच𑀟 ठ𑀧ठ𑀭𑀦 𑀞न𑀠च च𑀟 𑀟च𑀣च 𑀳𑀫𑀢 ब𑀱च𑀟𑀢𑀟 बच𑀳च𑀪 𑀞च𑀞च𑀪 𑀱च𑀳च𑀯'
26
+ - source_sentence: 𑀣च 𑀟च प𑀳𑁦𑀪𑁦𑀟 च
27
+ sentences:
28
+ - ल𑀢𑀳𑀳च𑀲𑀢𑀟 ल𑀢𑀳𑀳च𑀲𑀢𑀟 𑀫चझझ𑀢𑀟 𑀫चझझ𑀢𑀟 𑀠चललच𑀞चबचढचञचणचपच𑀞च𑀣𑀣न𑀟 𑀣च च𑀞च ण𑀢 𑀟𑀢णणच 𑀟च 𑀠न𑀳च𑀠𑀠च𑀟 𑀣𑁣𑀞च𑀪
29
+ 𑀫चझझ𑀢𑀟 𑀠चढन𑀞चत𑀢 𑀣𑁣𑀞च𑀪 𑀫च𑀞𑀞𑁣𑀞𑀢𑀟 𑀠च𑀪च ब𑀢𑀣च 𑀣𑁣𑀞च𑀪 𑀫चझझ𑀢𑀟 𑀠च𑀢 ढ𑀢णच𑀟 𑀫च𑀪च𑀘𑀢 𑀣𑁣𑀞च𑀪 𑀫च𑀞𑀞𑁣𑀞𑀢𑀟
30
+ 𑀢ल𑀢𑀠𑀢 𑀦 𑀣𑁣𑀞च𑀪 𑀫च𑀞𑀞𑁣𑀞𑀢𑀟 प𑀳𑁣𑀫𑁣𑀟 𑀳𑁣𑀘𑁣𑀘𑀢 ब𑀢 ढ𑀢लल 𑁣𑀲 𑀪𑀢ब𑀫प𑀳𑀦 𑀱च𑀟𑀣च च𑀞च 𑀲𑀢 𑀳च𑀟𑀢 𑀣च ब𑀢
31
+ ढ𑀢लल 𑀣𑁣𑀞च𑀪 𑀙णच𑀟 लन𑀱च𑀣𑀢𑀦 पच𑀪𑁣𑀟 झन𑀟ब𑀢ण𑁣ण𑀢𑀟 𑀙णच𑀟 लन𑀱च𑀣𑀢 𑀟च च𑀪𑁦𑀱चत𑀢𑀟 च𑀠𑀢𑀪𑀞च 𑀟𑁦 𑀳न𑀞च
32
+ प𑀳च𑀪च 𑀣𑁣𑀞च𑀪 𑀫चझझ𑀢𑀟 लचढन𑀪च𑀪𑁦𑀦 झन𑀟ब𑀢णच𑀪 लचढन𑀪च𑀪𑁦 पच च𑀠𑀢𑀪𑀞च पच ढनबच 𑀣𑁣𑀞च𑀪 𑀫चझझ𑀢𑀟
33
+ 𑀠न𑀫चलल𑀢 𑀞𑁣 च𑀘च𑀟𑀣च ठ𑀭 𑀞न𑀣𑀢𑀪𑀢𑀟 𑀫च𑀞𑀞𑀢 𑀟च 𑀠च𑀫चल𑀢तत𑀢𑀦 𑀠च𑀪नढनपच𑀟 ढच𑀟 𑀣च𑀪𑀢णच 𑀣च 𑀠च𑀳न
34
+ 𑀲च𑀳च𑀫च 𑀣𑁣𑀞च𑀪 𑀫चझझ𑀢𑀟 𑀠च𑀢 ढच 𑀣च बन𑀣न𑀠𑀠च𑀱च𑀦 𑀣𑁣𑀟 𑀠च𑀳न ढच 𑀣च चबच𑀘𑀢 𑀞न𑀣𑀢𑀪𑀢𑀟 𑀫च𑀞𑀞𑁣𑀞𑀢𑀟
35
+ 𑀘च𑀠𑀢𑀙च𑀟 𑀣𑁣𑀞च 𑀣𑁣𑀞च𑀪 𑀫चझझ𑀢𑀟 𑀠च𑀳न 𑀤च𑁥𑁦 पच तचल𑀢𑀲𑁣𑀪𑀟𑀢च𑀦 𑀣च𑀢𑀣च𑀢पच𑀱च 𑀣च 𑀣𑁣𑀞च𑀪 𑀫चझझ𑀢𑀟
36
+ 𑀤च𑁥𑁦 𑀣𑁣𑀞च𑀪 𑀠न𑀳नलन𑀟त𑀢 पच 𑀫च𑀞𑀞𑁣𑀞𑀢𑀟 𑀠चपच च 𑀠च𑀳चललचत𑀢𑀟 𑀟𑁦𑀱 𑀘𑁦𑀪𑀳𑁦ण 𑀣𑁣𑀞च𑀪 𑀫चझझ𑀢𑀟 𑀫चझझ𑀢𑀟
37
+ त𑀢𑀟 𑀫च𑀟त𑀢 𑀣च 𑀪च𑀳𑀫च𑀱च 𑀞न𑀣𑀢𑀪𑀢𑀟 𑀫चझझ𑀢𑀟 𑀠च𑀳न 𑀞चप𑀢𑀟 𑀞𑀢𑀪𑁦𑀣𑀢प𑀦 𑀱च𑀟𑀣च 𑀞𑁦 झन𑀟𑀳𑀫𑁦 च त𑀢𑀞𑀢𑀟
38
+ 𑀣𑁣𑀞च𑀪 तच𑀪𑀣 𑀟च 𑀳𑀫𑁦𑀞च𑀪चपच ठ𑀧𑀧थ 𑀣𑁣𑀞𑁣𑀞𑀢𑀟 𑀫चझझ𑀢𑀟 𑀠च𑀳न त𑀢 बचढच𑀟 त𑀢𑀟 𑀣न𑀪𑀢 𑀣च 𑀘𑀢𑀠च𑀙𑀢 𑀝𑀣𑁣𑀞च𑀪
39
+ 𑀫चझझ𑀢𑀟 𑀠च𑀳न त𑀢 बचढच 𑀣च 𑀘𑀢𑀠च𑀙𑀢 𑀮𑀣नढच 𑀱च𑀳न चढनढन𑀱च𑀟 झ𑀢𑀪च𑀪 𑀫चझझ𑀢𑀟 ढ𑀢𑀪𑀢पच𑀟𑀢णच 𑀫चझझ𑀢𑀟
40
+ 𑀣च ढच 𑀤च च 𑀢णच पचनण𑁦𑀱च ढच 𑀣𑁣𑀞च𑀪 𑀞च𑀪𑁦 𑀫च𑀞𑀞𑁣𑀞𑀢𑀟 𑀣च𑀟 च𑀣च𑀠 पच 𑀣न𑀟𑀢णच 𑀞च𑀙𑀢𑀣𑁣𑀘𑀢𑀟 𑀞च𑀪𑁦
41
+ 𑀫च𑀞𑀞𑀢𑀟 ढ𑀢ल𑀙च𑀣च𑀠च 𑀟च 𑀣न𑀟𑀢णच 𑀫च𑀞𑀞𑁣𑀞𑀢𑀟 𑀫चल𑀢पपच प𑀳च𑀪𑀢𑀟 𑀣𑁣𑀞च 𑀣𑁣𑀞च𑀪 𑀫च𑀞𑀞𑀢 𑀟च ढ𑀢णन𑀠च𑀟च𑀤च𑀪पच𑀯
42
+ - 𑀭𑀰𑀮𑀦 𑀣च लच𑀠ढच𑀪 पचबनललच च त𑀢𑀞𑀢𑀟 𑀪न𑀞न𑀟𑀢𑀟 ढठ 𑀟च प𑀳𑁦𑀪𑁦𑀟 झच𑀳च च 𑀧𑀕𑀖र𑀯
43
+ - द द द य𑀞न𑀠च 𑀞न ढचनपच 𑀱च चललच𑀫 𑀞न𑀠च 𑀞च 𑀣च 𑀞न 𑀫चञच𑀱च𑀟𑀢 𑀣च 𑀳𑀫𑀢द 𑀞न𑀠च बच 𑀠च𑀫च𑀢𑀲च 𑀞न
44
+ ण𑀢 𑀞णचनपचपच𑀱च𑀦 𑀞न𑀠च बच 𑀠चभ चढ𑁣पच 𑀤न𑀠न𑀟पच 𑀣च 𑀠च𑀪चणन 𑀣च 𑀠चपचलचनपच 𑀣च 𑀠चझ𑀱चढत𑀢 𑀠चभचढनत𑀢𑀟
45
+ 𑀞न𑀳च𑀟पच𑀦 𑀣च 𑀠चझ𑀱चढत𑀢 𑀠च𑀟𑀢𑀳च𑀟त𑀢𑀦 𑀣च चढ𑁣𑀞𑀢च ब𑁦𑀲𑁦 𑀣च 𑀩च𑀟 𑀫च𑀟णच 𑀣च चढ𑀢𑀟 𑀣च 𑀫च𑀟𑀟न𑀱च𑀟𑀞न
46
+ 𑀟च 𑀣च𑀠च 𑀳न𑀞च 𑀠चललच𑀞च𑀯
47
+ - source_sentence: पच𑀞च 𑀪च𑀱च𑀪 च 𑀳च𑀪𑀞𑀢
48
+ sentences:
49
+ - ' णच पच𑀞च 𑀪च𑀱च𑀪 बच𑀟𑀢 च 𑀠चप𑀳चण𑀢𑀟𑀦 𑀳च𑀪𑀞𑀢 𑀣च𑀠ढच च त𑀢𑀞𑀢𑀟 𑀳𑀫𑀢𑀪𑀢𑀟𑀯'
50
+ - थ𑀰𑀭𑀗𑀖ठ𑀰ठ𑁢थ𑁢𑀭 𑀦 𑀭𑀧𑀯
51
+ - पचलचढ𑀢𑀘च𑀟 𑀣च 𑀪𑁦𑀣𑀢ण𑁣 च𑀟 बचढचपच𑀪 𑀣च पचलचढ𑀢𑀘𑀢𑀟 बच ब𑀫च𑀟च च 𑀭थ𑁢𑀖 𑀞न𑀠च णच𑀟च 𑀞च𑀪𑀞च𑀳𑀫𑀢𑀟
52
+ 𑀢𑀞𑁣𑀟 𑀘𑀢𑀫च𑀯
53
+ - source_sentence: 𑀱चप𑀳च 𑀣च 𑀟च𑀣च 𑀳न𑀦 𑀣𑀪𑀢ख𑁦 𑀞𑁣𑀱च𑀟𑁦 णच 𑀣च च ल𑁣𑀞चत𑀢𑀟 𑀫च𑀳च𑀳𑀫𑁦𑀟𑀳च𑀯
54
+ sentences:
55
+ - ' ण𑀢𑀟 च𑀢𑀞𑀢 पच𑀪𑁦 𑀣च 𑀳चन𑀪च𑀟 𑀞न𑀟ब𑀢ण𑁣ण𑀢𑀟 णच𑀫न𑀣च𑀱च 𑀣𑁣𑀟 𑀞च𑀪च 𑀱चणच𑀪 𑀣च 𑀞च𑀟 णच𑀟 च𑀣च𑀠 𑀣च
56
+ 𑀞च𑀪𑀲च𑀲च 𑀫𑀢𑀠𑀠च च प𑀳च𑀞च𑀟𑀢𑀟 चल𑀙न𑀠𑀠𑁣𑀠𑀢𑀟 णच𑀫न𑀣च𑀱च च 𑀠च𑀣च𑀣𑀢𑀟 𑀱च𑀣च𑀟𑀣च च𑀞च 𑀲चपचपपच𑀞च 𑀣च
57
+ 𑀱च𑀣च𑀟𑀣च च𑀞𑁦 𑀤चलन𑀟पच च 𑀣न𑀟𑀢णच𑀯'
58
+ - ' 𑀫𑁣पन𑀟च𑀟 च𑀟च 𑀱चप𑀳च 𑀳न पच 𑀫च𑀟णच𑀪 𑀟च𑀙न𑀪च𑀪 𑀣चन𑀞च𑀪 𑀫𑁣प𑁣 𑀣च𑀢𑀣च𑀢 𑀣च णच𑀣𑀣च च𑀞च 𑀟च𑀣च
59
+ 𑀳न𑀦 पच𑀪𑁦 𑀣च ब𑁦𑀟𑁦खच 𑀣𑀪𑀢ख𑁦 𑀣च 𑀞𑁦 पचढढचपच𑀪 𑀣च त𑁦𑀱च 𑀞𑁣𑀱च𑀟𑁦 𑀲𑀢𑀪च𑀠 णच त𑀢 बचढच 𑀣च 𑀞च𑀳च𑀟त𑁦𑀱च
60
+ च त𑀢𑀞𑀢𑀟 बच𑀘𑁦𑀪𑁦𑀟 ल𑁣𑀞चत𑀢𑀟 𑀫च𑀳च𑀳𑀫𑁦𑀟𑀳च𑀯'
61
+ - ' 𑀪च𑀠न𑀞च च त𑀢𑀞𑀢𑀟 झच𑀟च𑀟च𑀟 𑀪चढ𑁣 𑀣𑁣𑀟 𑀞च𑀪𑁦 प𑀳𑀢𑀪𑁦षप𑀳𑀢𑀪𑁦 𑀣चबच 𑀲𑁦𑀳च 𑀠चबच𑀟𑀢𑀟 𑀫𑁦𑀪ढ𑀢त𑀢𑀣𑁦𑀳
62
+ 𑀣च लचलचपच 𑀪𑁣𑀣𑁦𑀟प𑀯'
63
+ - source_sentence: 𑀠चपच𑀞𑀢𑀟 पच𑀟च ढनबच 𑀱च 𑀟च𑀠ध𑁣ल लच𑀣𑀢𑁦𑀳 𑀲त पच 𑀱च𑀳च𑀯
64
+ sentences:
65
+ - ' च 𑀠चपच𑀞𑀢𑀟 𑀞नल𑁣ढ पच𑀟च ढनबच 𑀱च 𑀞𑁣𑀠च𑀳 𑀟च𑀠ध𑁣ल लच𑀣𑀢𑁦𑀳 𑀲त पच 𑀟च𑀠𑀢ढ𑀢च 𑀱च𑀳च𑀯'
66
+ - ' णच𑀟𑀞न𑀟च𑀟 बन𑀟𑀣न𑀠च𑀪 𑀘𑀣𑁦ण𑀣𑁦𑀫 ब𑀢𑀣च 𑀟𑁦 बच ब𑀢𑀣च𑀘𑁦 𑀠च𑀳न णच𑀱च 𑀟च झच𑀪𑀟𑀢 𑀟च 𑀭𑁢 𑀣च 𑀟च 𑀭𑀬
67
+ 𑀟च चल𑁦धध𑀢𑀟 ढ𑁣न𑀪ब𑁦𑁣𑀢𑀳𑀢𑁦𑀦 𑀱चञच𑀟𑀣च 𑀞𑁦 ञचन𑀞𑁦 𑀣च 𑀤च𑀟𑁦𑀟 𑀣नप𑀳𑁦𑀯'
68
+ - 𑀪च𑀪𑀪चढच 𑀳𑀫𑁦𑀞च𑀪न𑀟 णच 𑀞च𑀳च𑀟त𑁦 ठर𑀯
69
+ ---
70
+
71
+ # SentenceTransformer based on shibing624/text2vec-base-multilingual
72
+
73
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [shibing624/text2vec-base-multilingual](https://huggingface.co/shibing624/text2vec-base-multilingual). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
74
+
75
+ ## Model Details
76
+
77
+ ### Model Description
78
+ - **Model Type:** Sentence Transformer
79
+ - **Base model:** [shibing624/text2vec-base-multilingual](https://huggingface.co/shibing624/text2vec-base-multilingual) <!-- at revision e9215a523d4324733a3c8279d0adff7bf37a7a77 -->
80
+ - **Maximum Sequence Length:** 512 tokens
81
+ - **Output Dimensionality:** 384 tokens
82
+ - **Similarity Function:** Cosine Similarity
83
+ <!-- - **Training Dataset:** Unknown -->
84
+ <!-- - **Language:** Unknown -->
85
+ <!-- - **License:** Unknown -->
86
+
87
+ ### Model Sources
88
+
89
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
90
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
91
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
92
+
93
+ ### Full Model Architecture
94
+
95
+ ```
96
+ SentenceTransformer(
97
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
98
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
99
+ )
100
+ ```
101
+
102
+ ## Usage
103
+
104
+ ### Direct Usage (Sentence Transformers)
105
+
106
+ First install the Sentence Transformers library:
107
+
108
+ ```bash
109
+ pip install -U sentence-transformers
110
+ ```
111
+
112
+ Then you can load this model and run inference.
113
+ ```python
114
+ from sentence_transformers import SentenceTransformer
115
+
116
+ # Download from the 🤗 Hub
117
+ model = SentenceTransformer("T-Blue/tsdae_pro_text2vec")
118
+ # Run inference
119
+ sentences = [
120
+ '𑀠चपच𑀞𑀢𑀟 पच𑀟च ढनबच 𑀱च 𑀟च𑀠ध𑁣ल लच𑀣𑀢𑁦𑀳 𑀲त पच 𑀱च𑀳च𑀯',
121
+ ' च 𑀠चपच𑀞𑀢𑀟 𑀞नल𑁣ढ पच𑀟च ढनबच 𑀱च 𑀞𑁣𑀠च𑀳 𑀟च𑀠ध𑁣ल लच𑀣𑀢𑁦𑀳 𑀲त पच 𑀟च𑀠𑀢ढ𑀢च 𑀱च𑀳च𑀯',
122
+ ' णच𑀟𑀞न𑀟च𑀟 बन𑀟𑀣न𑀠च𑀪 𑀘𑀣𑁦ण𑀣𑁦𑀫 ब𑀢𑀣च 𑀟𑁦 बच ब𑀢𑀣च𑀘𑁦 𑀠च𑀳न णच𑀱च 𑀟च झच𑀪𑀟𑀢 𑀟च 𑀭𑁢 𑀣च 𑀟च 𑀭𑀬 𑀟च चल𑁦धध𑀢𑀟 ढ𑁣न𑀪ब𑁦𑁣𑀢𑀳𑀢𑁦𑀦 𑀱चञच𑀟𑀣च 𑀞𑁦 ञचन𑀞𑁦 𑀣च 𑀤च𑀟𑁦𑀟 𑀣नप𑀳𑁦𑀯',
123
+ ]
124
+ embeddings = model.encode(sentences)
125
+ print(embeddings.shape)
126
+ # [3, 384]
127
+
128
+ # Get the similarity scores for the embeddings
129
+ similarities = model.similarity(embeddings, embeddings)
130
+ print(similarities.shape)
131
+ # [3, 3]
132
+ ```
133
+
134
+ <!--
135
+ ### Direct Usage (Transformers)
136
+
137
+ <details><summary>Click to see the direct usage in Transformers</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Downstream Usage (Sentence Transformers)
144
+
145
+ You can finetune this model on your own dataset.
146
+
147
+ <details><summary>Click to expand</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Out-of-Scope Use
154
+
155
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
156
+ -->
157
+
158
+ <!--
159
+ ## Bias, Risks and Limitations
160
+
161
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
162
+ -->
163
+
164
+ <!--
165
+ ### Recommendations
166
+
167
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
168
+ -->
169
+
170
+ ## Training Details
171
+
172
+ ### Training Dataset
173
+
174
+ #### Unnamed Dataset
175
+
176
+
177
+ * Size: 64,000 training samples
178
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
179
+ * Approximate statistics based on the first 1000 samples:
180
+ | | sentence_0 | sentence_1 |
181
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
182
+ | type | string | string |
183
+ | details | <ul><li>min: 3 tokens</li><li>mean: 37.42 tokens</li><li>max: 342 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 89.84 tokens</li><li>max: 512 tokens</li></ul> |
184
+ * Samples:
185
+ | sentence_0 | sentence_1 |
186
+ |:-----------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
187
+ | <code>𑀠नपच𑀟𑁦𑀫च𑀢𑀫न𑀱च𑀟 𑀭थथ𑀬𑀯</code> | <code>𑀞𑀢𑀣𑀢𑀣𑀣𑀢बच𑀪 𑀳च𑀟च𑀙च𑀞नल𑁣ढझच𑀳च𑀳𑀫𑁦𑀟 𑀣न𑀟𑀢णच𑀠च𑀟च𑀤च𑀪पच 𑀪चणचणणन𑀟 𑀠नपच𑀟𑁦𑀫च𑀢𑀫न𑀱च𑀟 𑀭थथ𑀬𑀯</code> |
188
+ | <code>च 𑀱च𑀘𑁦𑀟 𑀘च𑀠भ𑀢णणच 𑀠च𑀢 𑀞𑀢𑀳𑀫𑀢𑀟 पच बच𑀳𑀞𑀢णच𑀯</code> | <code>𑀘च𑀠भ𑀢णणच𑀪 च ल𑁣𑀞चत𑀢𑀟 𑀢पच त𑁦 पच ढ𑀢णन 𑀣च पच ण𑀢 𑀟च𑀠𑀢𑀘𑀢𑀟 𑀞𑁣𑀞च𑀪𑀢 𑀱च𑀘𑁦𑀟 𑀳च𑀠च𑀪 𑀣च 𑀘च𑀠भ𑀢णणच 𑀠च𑀢 𑀞𑀢𑀳𑀫𑀢𑀟 𑀞च𑀳च पच बच𑀳𑀞𑀢णच𑀯</code> |
189
+ | <code>𑀯</code> | <code>𑀯</code> |
190
+ * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
191
+
192
+ ### Training Hyperparameters
193
+ #### Non-Default Hyperparameters
194
+
195
+ - `per_device_train_batch_size`: 16
196
+ - `per_device_eval_batch_size`: 16
197
+ - `multi_dataset_batch_sampler`: round_robin
198
+
199
+ #### All Hyperparameters
200
+ <details><summary>Click to expand</summary>
201
+
202
+ - `overwrite_output_dir`: False
203
+ - `do_predict`: False
204
+ - `eval_strategy`: no
205
+ - `prediction_loss_only`: True
206
+ - `per_device_train_batch_size`: 16
207
+ - `per_device_eval_batch_size`: 16
208
+ - `per_gpu_train_batch_size`: None
209
+ - `per_gpu_eval_batch_size`: None
210
+ - `gradient_accumulation_steps`: 1
211
+ - `eval_accumulation_steps`: None
212
+ - `learning_rate`: 5e-05
213
+ - `weight_decay`: 0.0
214
+ - `adam_beta1`: 0.9
215
+ - `adam_beta2`: 0.999
216
+ - `adam_epsilon`: 1e-08
217
+ - `max_grad_norm`: 1
218
+ - `num_train_epochs`: 3
219
+ - `max_steps`: -1
220
+ - `lr_scheduler_type`: linear
221
+ - `lr_scheduler_kwargs`: {}
222
+ - `warmup_ratio`: 0.0
223
+ - `warmup_steps`: 0
224
+ - `log_level`: passive
225
+ - `log_level_replica`: warning
226
+ - `log_on_each_node`: True
227
+ - `logging_nan_inf_filter`: True
228
+ - `save_safetensors`: True
229
+ - `save_on_each_node`: False
230
+ - `save_only_model`: False
231
+ - `restore_callback_states_from_checkpoint`: False
232
+ - `no_cuda`: False
233
+ - `use_cpu`: False
234
+ - `use_mps_device`: False
235
+ - `seed`: 42
236
+ - `data_seed`: None
237
+ - `jit_mode_eval`: False
238
+ - `use_ipex`: False
239
+ - `bf16`: False
240
+ - `fp16`: False
241
+ - `fp16_opt_level`: O1
242
+ - `half_precision_backend`: auto
243
+ - `bf16_full_eval`: False
244
+ - `fp16_full_eval`: False
245
+ - `tf32`: None
246
+ - `local_rank`: 0
247
+ - `ddp_backend`: None
248
+ - `tpu_num_cores`: None
249
+ - `tpu_metrics_debug`: False
250
+ - `debug`: []
251
+ - `dataloader_drop_last`: False
252
+ - `dataloader_num_workers`: 0
253
+ - `dataloader_prefetch_factor`: None
254
+ - `past_index`: -1
255
+ - `disable_tqdm`: False
256
+ - `remove_unused_columns`: True
257
+ - `label_names`: None
258
+ - `load_best_model_at_end`: False
259
+ - `ignore_data_skip`: False
260
+ - `fsdp`: []
261
+ - `fsdp_min_num_params`: 0
262
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
263
+ - `fsdp_transformer_layer_cls_to_wrap`: None
264
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
265
+ - `deepspeed`: None
266
+ - `label_smoothing_factor`: 0.0
267
+ - `optim`: adamw_torch
268
+ - `optim_args`: None
269
+ - `adafactor`: False
270
+ - `group_by_length`: False
271
+ - `length_column_name`: length
272
+ - `ddp_find_unused_parameters`: None
273
+ - `ddp_bucket_cap_mb`: None
274
+ - `ddp_broadcast_buffers`: False
275
+ - `dataloader_pin_memory`: True
276
+ - `dataloader_persistent_workers`: False
277
+ - `skip_memory_metrics`: True
278
+ - `use_legacy_prediction_loop`: False
279
+ - `push_to_hub`: False
280
+ - `resume_from_checkpoint`: None
281
+ - `hub_model_id`: None
282
+ - `hub_strategy`: every_save
283
+ - `hub_private_repo`: False
284
+ - `hub_always_push`: False
285
+ - `gradient_checkpointing`: False
286
+ - `gradient_checkpointing_kwargs`: None
287
+ - `include_inputs_for_metrics`: False
288
+ - `eval_do_concat_batches`: True
289
+ - `fp16_backend`: auto
290
+ - `push_to_hub_model_id`: None
291
+ - `push_to_hub_organization`: None
292
+ - `mp_parameters`:
293
+ - `auto_find_batch_size`: False
294
+ - `full_determinism`: False
295
+ - `torchdynamo`: None
296
+ - `ray_scope`: last
297
+ - `ddp_timeout`: 1800
298
+ - `torch_compile`: False
299
+ - `torch_compile_backend`: None
300
+ - `torch_compile_mode`: None
301
+ - `dispatch_batches`: None
302
+ - `split_batches`: None
303
+ - `include_tokens_per_second`: False
304
+ - `include_num_input_tokens_seen`: False
305
+ - `neftune_noise_alpha`: None
306
+ - `optim_target_modules`: None
307
+ - `batch_eval_metrics`: False
308
+ - `eval_on_start`: False
309
+ - `batch_sampler`: batch_sampler
310
+ - `multi_dataset_batch_sampler`: round_robin
311
+
312
+ </details>
313
+
314
+ ### Training Logs
315
+ | Epoch | Step | Training Loss |
316
+ |:-----:|:-----:|:-------------:|
317
+ | 0.125 | 500 | 4.0592 |
318
+ | 0.25 | 1000 | 1.6454 |
319
+ | 0.375 | 1500 | 1.4774 |
320
+ | 0.5 | 2000 | 1.4131 |
321
+ | 0.625 | 2500 | 1.3766 |
322
+ | 0.75 | 3000 | 1.3488 |
323
+ | 0.875 | 3500 | 1.3252 |
324
+ | 1.0 | 4000 | 1.3087 |
325
+ | 1.125 | 4500 | 1.2931 |
326
+ | 1.25 | 5000 | 1.2772 |
327
+ | 1.375 | 5500 | 1.2655 |
328
+ | 1.5 | 6000 | 1.2535 |
329
+ | 1.625 | 6500 | 1.243 |
330
+ | 1.75 | 7000 | 1.2305 |
331
+ | 1.875 | 7500 | 1.223 |
332
+ | 2.0 | 8000 | 1.216 |
333
+ | 2.125 | 8500 | 1.2073 |
334
+ | 2.25 | 9000 | 1.1999 |
335
+ | 2.375 | 9500 | 1.1935 |
336
+ | 2.5 | 10000 | 1.1872 |
337
+ | 2.625 | 10500 | 1.1804 |
338
+ | 2.75 | 11000 | 1.17 |
339
+ | 2.875 | 11500 | 1.167 |
340
+ | 3.0 | 12000 | 1.1623 |
341
+
342
+
343
+ ### Framework Versions
344
+ - Python: 3.10.12
345
+ - Sentence Transformers: 3.0.1
346
+ - Transformers: 4.42.4
347
+ - PyTorch: 2.3.1+cu121
348
+ - Accelerate: 0.33.0
349
+ - Datasets: 2.18.0
350
+ - Tokenizers: 0.19.1
351
+
352
+ ## Citation
353
+
354
+ ### BibTeX
355
+
356
+ #### Sentence Transformers
357
+ ```bibtex
358
+ @inproceedings{reimers-2019-sentence-bert,
359
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
360
+ author = "Reimers, Nils and Gurevych, Iryna",
361
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
362
+ month = "11",
363
+ year = "2019",
364
+ publisher = "Association for Computational Linguistics",
365
+ url = "https://arxiv.org/abs/1908.10084",
366
+ }
367
+ ```
368
+
369
+ #### DenoisingAutoEncoderLoss
370
+ ```bibtex
371
+ @inproceedings{wang-2021-TSDAE,
372
+ title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
373
+ author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
374
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
375
+ month = nov,
376
+ year = "2021",
377
+ address = "Punta Cana, Dominican Republic",
378
+ publisher = "Association for Computational Linguistics",
379
+ pages = "671--688",
380
+ url = "https://arxiv.org/abs/2104.06979",
381
+ }
382
+ ```
383
+
384
+ <!--
385
+ ## Glossary
386
+
387
+ *Clearly define terms in order to be accessible across audiences.*
388
+ -->
389
+
390
+ <!--
391
+ ## Model Card Authors
392
+
393
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
394
+ -->
395
+
396
+ <!--
397
+ ## Model Card Contact
398
+
399
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
400
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "shibing624/text2vec-base-multilingual",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da7daf7d6626266bfb3e610526cd9d7dae9e0832d0a630feb1b5fb5d4628f3f7
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 256,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260