metadata
base_model:
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
- unsloth/Meta-Llama-3.1-8B-Instruct
- unsloth/Llama-3.1-Storm-8B
- arcee-ai/Llama-3.1-SuperNova-Lite
- VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
library_name: transformers
tags:
- mergekit
- merge
model-index:
- name: ZEUS-8B-V22
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 79.95
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V22
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.21
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V22
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 20.24
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V22
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.4
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V22
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.37
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V22
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.64
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V22
name: Open LLM Leaderboard
Untitled Model (1)
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the DARE TIES merge method using unsloth/Meta-Llama-3.1-8B-Instruct as a base.
Models Merged
The following models were included in the merge:
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
- unsloth/Llama-3.1-Storm-8B
- arcee-ai/Llama-3.1-SuperNova-Lite
- VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
Configuration
The following YAML configuration was used to produce this model:
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
int8_mask: 1.0
normalize: 1.0
random_seed: 145.0
slices:
- sources:
- layer_range: [0, 32]
model: unsloth/Llama-3.1-Storm-8B
parameters:
density: 0.94
weight: 0.35
- layer_range: [0, 32]
model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
density: 0.92
weight: 0.26
- layer_range: [0, 32]
model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
parameters:
density: 0.91
weight: 0.2
- layer_range: [0, 32]
model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
parameters:
density: 0.93
weight: 0.19
- layer_range: [0, 32]
model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer:
tokens:
<|begin_of_text|>:
force: true
source: unsloth/Meta-Llama-3.1-8B-Instruct
<|eot_id|>:
force: true
source: unsloth/Meta-Llama-3.1-8B-Instruct
<|finetune_right_pad_id|>:
force: true
source: unsloth/Meta-Llama-3.1-8B-Instruct
Open LLM Leaderboard Evaluation Results
Detailed results can be found here! Summarized results can be found here!
Metric | Value (%) |
---|---|
Average | 30.80 |
IFEval (0-Shot) | 79.95 |
BBH (3-Shot) | 32.21 |
MATH Lvl 5 (4-Shot) | 20.24 |
GPQA (0-shot) | 10.40 |
MuSR (0-shot) | 9.37 |
MMLU-PRO (5-shot) | 32.64 |