GLM-4
Collection
GLM-4 Open Models
•
14 items
•
Updated
•
116
Read this in English
2024/08/12, 本仓库代码已更新并使用 transforemrs>=4.44.0
, 请及时更新依赖。
GLM-4V-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源多模态版本。 GLM-4V-9B 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
GLM-4V-9B 是一个多模态语言模型,具备视觉理解能力,其相关经典任务的评测结果如下:
MMBench-EN-Test | MMBench-CN-Test | SEEDBench_IMG | MMStar | MMMU | MME | HallusionBench | AI2D | OCRBench | |
---|---|---|---|---|---|---|---|---|---|
英文综合 | 中文综合 | 综合能力 | 综合能力 | 学科综合 | 感知推理 | 幻觉性 | 图表理解 | 文字识别 | |
GPT-4o, 20240513 | 83.4 | 82.1 | 77.1 | 63.9 | 69.2 | 2310.3 | 55 | 84.6 | 736 |
GPT-4v, 20240409 | 81 | 80.2 | 73 | 56 | 61.7 | 2070.2 | 43.9 | 78.6 | 656 |
GPT-4v, 20231106 | 77 | 74.4 | 72.3 | 49.7 | 53.8 | 1771.5 | 46.5 | 75.9 | 516 |
InternVL-Chat-V1.5 | 82.3 | 80.7 | 75.2 | 57.1 | 46.8 | 2189.6 | 47.4 | 80.6 | 720 |
LlaVA-Next-Yi-34B | 81.1 | 79 | 75.7 | 51.6 | 48.8 | 2050.2 | 34.8 | 78.9 | 574 |
Step-1V | 80.7 | 79.9 | 70.3 | 50 | 49.9 | 2206.4 | 48.4 | 79.2 | 625 |
MiniCPM-Llama3-V2.5 | 77.6 | 73.8 | 72.3 | 51.8 | 45.8 | 2024.6 | 42.4 | 78.4 | 725 |
Qwen-VL-Max | 77.6 | 75.7 | 72.7 | 49.5 | 52 | 2281.7 | 41.2 | 75.7 | 684 |
GeminiProVision | 73.6 | 74.3 | 70.7 | 38.6 | 49 | 2148.9 | 45.7 | 72.9 | 680 |
Claude-3V Opus | 63.3 | 59.2 | 64 | 45.7 | 54.9 | 1586.8 | 37.8 | 70.6 | 694 |
GLM-4v-9B | 81.1 | 79.4 | 76.8 | 58.7 | 47.2 | 2163.8 | 46.6 | 81.1 | 786 |
本仓库是 GLM-4V-9B 的模型仓库,支持8K
上下文长度。
更多推理代码和依赖信息,请访问我们的 github。
请严格按照依赖安装,否则无法正常运行。 。
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)
query = '描述这张图片'
image = Image.open("your image").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True) # chat mode
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4v-9b",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
GLM-4 模型的权重的使用则需要遵循 LICENSE。
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
@misc{glm2024chatglm,
title={ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools},
author={Team GLM and Aohan Zeng and Bin Xu and Bowen Wang and Chenhui Zhang and Da Yin and Diego Rojas and Guanyu Feng and Hanlin Zhao and Hanyu Lai and Hao Yu and Hongning Wang and Jiadai Sun and Jiajie Zhang and Jiale Cheng and Jiayi Gui and Jie Tang and Jing Zhang and Juanzi Li and Lei Zhao and Lindong Wu and Lucen Zhong and Mingdao Liu and Minlie Huang and Peng Zhang and Qinkai Zheng and Rui Lu and Shuaiqi Duan and Shudan Zhang and Shulin Cao and Shuxun Yang and Weng Lam Tam and Wenyi Zhao and Xiao Liu and Xiao Xia and Xiaohan Zhang and Xiaotao Gu and Xin Lv and Xinghan Liu and Xinyi Liu and Xinyue Yang and Xixuan Song and Xunkai Zhang and Yifan An and Yifan Xu and Yilin Niu and Yuantao Yang and Yueyan Li and Yushi Bai and Yuxiao Dong and Zehan Qi and Zhaoyu Wang and Zhen Yang and Zhengxiao Du and Zhenyu Hou and Zihan Wang},
year={2024},
eprint={2406.12793},
archivePrefix={arXiv},
primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
}
@misc{wang2023cogvlm,
title={CogVLM: Visual Expert for Pretrained Language Models},
author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2311.03079},
archivePrefix={arXiv},
primaryClass={cs.CV}
}