GLM-4V-9B

Read this in English

2024/08/12, 本仓库代码已更新并使用 transforemrs>=4.44.0, 请及时更新依赖。

GLM-4V-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源多模态版本。 GLM-4V-9B 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。

多模态能力

GLM-4V-9B 是一个多模态语言模型,具备视觉理解能力,其相关经典任务的评测结果如下:

MMBench-EN-Test MMBench-CN-Test SEEDBench_IMG MMStar MMMU MME HallusionBench AI2D OCRBench
英文综合 中文综合 综合能力 综合能力 学科综合 感知推理 幻觉性 图表理解 文字识别
GPT-4o, 20240513 83.4 82.1 77.1 63.9 69.2 2310.3 55 84.6 736
GPT-4v, 20240409 81 80.2 73 56 61.7 2070.2 43.9 78.6 656
GPT-4v, 20231106 77 74.4 72.3 49.7 53.8 1771.5 46.5 75.9 516
InternVL-Chat-V1.5 82.3 80.7 75.2 57.1 46.8 2189.6 47.4 80.6 720
LlaVA-Next-Yi-34B 81.1 79 75.7 51.6 48.8 2050.2 34.8 78.9 574
Step-1V 80.7 79.9 70.3 50 49.9 2206.4 48.4 79.2 625
MiniCPM-Llama3-V2.5 77.6 73.8 72.3 51.8 45.8 2024.6 42.4 78.4 725
Qwen-VL-Max 77.6 75.7 72.7 49.5 52 2281.7 41.2 75.7 684
GeminiProVision 73.6 74.3 70.7 38.6 49 2148.9 45.7 72.9 680
Claude-3V Opus 63.3 59.2 64 45.7 54.9 1586.8 37.8 70.6 694
GLM-4v-9B 81.1 79.4 76.8 58.7 47.2 2163.8 46.6 81.1 786

本仓库是 GLM-4V-9B 的模型仓库,支持8K上下文长度。

运行模型

更多推理代码和依赖信息,请访问我们的 github

请严格按照依赖安装,否则无法正常运行。

import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda"

tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)

query = '描述这张图片'
image = Image.open("your image").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
                                       add_generation_prompt=True, tokenize=True, return_tensors="pt",
                                       return_dict=True)  # chat mode

inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
    "THUDM/glm-4v-9b",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(device).eval()

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0]))

协议

GLM-4 模型的权重的使用则需要遵循 LICENSE

引用

如果你觉得我们的工作有帮助的话,请考虑引用下列论文。

@misc{glm2024chatglm,
      title={ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools}, 
      author={Team GLM and Aohan Zeng and Bin Xu and Bowen Wang and Chenhui Zhang and Da Yin and Diego Rojas and Guanyu Feng and Hanlin Zhao and Hanyu Lai and Hao Yu and Hongning Wang and Jiadai Sun and Jiajie Zhang and Jiale Cheng and Jiayi Gui and Jie Tang and Jing Zhang and Juanzi Li and Lei Zhao and Lindong Wu and Lucen Zhong and Mingdao Liu and Minlie Huang and Peng Zhang and Qinkai Zheng and Rui Lu and Shuaiqi Duan and Shudan Zhang and Shulin Cao and Shuxun Yang and Weng Lam Tam and Wenyi Zhao and Xiao Liu and Xiao Xia and Xiaohan Zhang and Xiaotao Gu and Xin Lv and Xinghan Liu and Xinyi Liu and Xinyue Yang and Xixuan Song and Xunkai Zhang and Yifan An and Yifan Xu and Yilin Niu and Yuantao Yang and Yueyan Li and Yushi Bai and Yuxiao Dong and Zehan Qi and Zhaoyu Wang and Zhen Yang and Zhengxiao Du and Zhenyu Hou and Zihan Wang},
      year={2024},
      eprint={2406.12793},
      archivePrefix={arXiv},
      primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
}
@misc{wang2023cogvlm,
      title={CogVLM: Visual Expert for Pretrained Language Models}, 
      author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
      year={2023},
      eprint={2311.03079},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Downloads last month
111,633
Safetensors
Model size
13.9B params
Tensor type
BF16
·
Inference API
Inference API (serverless) has been turned off for this model.

Model tree for THUDM/glm-4v-9b

Finetunes
1 model
Quantizations
4 models

Spaces using THUDM/glm-4v-9b 6

Collection including THUDM/glm-4v-9b