zR commited on
Commit
01328fa
·
1 Parent(s): 9a7a028

support transformers 4.44

Browse files
Files changed (5) hide show
  1. README.md +2 -0
  2. README_en.md +2 -0
  3. config.json +1 -1
  4. generation_config.json +1 -1
  5. modeling_chatglm.py +1 -4
README.md CHANGED
@@ -19,6 +19,8 @@ inference: false
19
 
20
  Read this in [English](README_en.md)
21
 
 
 
22
  GLM-4V-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源多模态版本。
23
  **GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini
24
  1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
 
19
 
20
  Read this in [English](README_en.md)
21
 
22
+ **2024/08/12, 本仓库代码已更新并使用 `transforemrs>=4.44.0`, 请及时更新依赖。**
23
+
24
  GLM-4V-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源多模态版本。
25
  **GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini
26
  1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
README_en.md CHANGED
@@ -1,5 +1,7 @@
1
  # GLM-4V-9B
2
 
 
 
3
  GLM-4V-9B is an open source multimodal version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu AI.
4
  **GLM-4V-9B** has the ability to conduct multi-round conversations in Chinese and English at a high resolution of 1120 * 1120. In multimodal evaluations of comprehensive Chinese and English abilities, perceptual reasoning, text recognition, and chart understanding, GLM-4V-9B has shown superior performance over GPT-4-turbo-2024-04-09, Gemini
5
  1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
 
1
  # GLM-4V-9B
2
 
3
+ **2024/08/12, The repository code has been updated and now requires `transformers>=4.44.0`. Please update your dependencies accordingly.**
4
+
5
  GLM-4V-9B is an open source multimodal version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu AI.
6
  **GLM-4V-9B** has the ability to conduct multi-round conversations in Chinese and English at a high resolution of 1120 * 1120. In multimodal evaluations of comprehensive Chinese and English abilities, perceptual reasoning, text recognition, and chart understanding, GLM-4V-9B has shown superior performance over GPT-4-turbo-2024-04-09, Gemini
7
  1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
config.json CHANGED
@@ -50,7 +50,7 @@
50
  "seq_length": 8192,
51
  "use_cache": true,
52
  "torch_dtype": "bfloat16",
53
- "transformers_version": "4.42.4",
54
  "tie_word_embeddings": false,
55
  "eos_token_id": [151329, 151336, 151338],
56
  "pad_token_id": 151329,
 
50
  "seq_length": 8192,
51
  "use_cache": true,
52
  "torch_dtype": "bfloat16",
53
+ "transformers_version": "4.44.0",
54
  "tie_word_embeddings": false,
55
  "eos_token_id": [151329, 151336, 151338],
56
  "pad_token_id": 151329,
generation_config.json CHANGED
@@ -9,5 +9,5 @@
9
  "temperature": 0.8,
10
  "max_length": 8192,
11
  "top_p": 0.8,
12
- "transformers_version": "4.42.4"
13
  }
 
9
  "temperature": 0.8,
10
  "max_length": 8192,
11
  "top_p": 0.8,
12
+ "transformers_version": "4.44.0"
13
  }
modeling_chatglm.py CHANGED
@@ -1082,12 +1082,9 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
1082
  outputs: ModelOutput,
1083
  model_kwargs: Dict[str, Any],
1084
  is_encoder_decoder: bool = False,
1085
- standardize_cache_format: bool = False,
1086
  ) -> Dict[str, Any]:
1087
  # update past_key_values
1088
- cache_name, cache = self._extract_past_from_model_output(
1089
- outputs, standardize_cache_format=standardize_cache_format
1090
- )
1091
  model_kwargs[cache_name] = cache
1092
 
1093
  # update attention mask
 
1082
  outputs: ModelOutput,
1083
  model_kwargs: Dict[str, Any],
1084
  is_encoder_decoder: bool = False,
 
1085
  ) -> Dict[str, Any]:
1086
  # update past_key_values
1087
+ cache_name, cache = self._extract_past_from_model_output(outputs)
 
 
1088
  model_kwargs[cache_name] = cache
1089
 
1090
  # update attention mask