zR
commited on
Commit
·
fe11ac1
1
Parent(s):
e190b08
flash attn support
Browse files- config.json +1 -0
- modeling_chatglm.py +149 -5
config.json
CHANGED
@@ -31,6 +31,7 @@
|
|
31 |
"apply_residual_connection_post_layernorm": false,
|
32 |
"attention_dropout": 0.0,
|
33 |
"attention_softmax_in_fp32": true,
|
|
|
34 |
"bias_dropout_fusion": true,
|
35 |
"ffn_hidden_size": 13696,
|
36 |
"fp32_residual_connection": false,
|
|
|
31 |
"apply_residual_connection_post_layernorm": false,
|
32 |
"attention_dropout": 0.0,
|
33 |
"attention_softmax_in_fp32": true,
|
34 |
+
"attn_implementation": "sdpa",
|
35 |
"bias_dropout_fusion": true,
|
36 |
"ffn_hidden_size": 13696,
|
37 |
"fp32_residual_connection": false,
|
modeling_chatglm.py
CHANGED
@@ -21,16 +21,21 @@ from transformers.modeling_outputs import (
|
|
21 |
SequenceClassifierOutputWithPast,
|
22 |
)
|
23 |
from transformers.modeling_utils import PreTrainedModel
|
24 |
-
from transformers.utils import logging
|
|
|
25 |
from transformers.generation.logits_process import LogitsProcessor
|
26 |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
27 |
|
28 |
from .configuration_chatglm import ChatGLMConfig
|
29 |
from .visual import EVA2CLIPModel
|
30 |
|
|
|
|
|
|
|
|
|
31 |
# flags required to enable jit fusion kernels
|
32 |
|
33 |
-
if sys.platform != 'darwin':
|
34 |
torch._C._jit_set_profiling_mode(False)
|
35 |
torch._C._jit_set_profiling_executor(False)
|
36 |
torch._C._jit_override_can_fuse_on_cpu(True)
|
@@ -44,6 +49,7 @@ VISION_TOKEN_TYPE = 1
|
|
44 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
45 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
46 |
|
|
|
47 |
def default_init(cls, *args, **kwargs):
|
48 |
return cls(*args, **kwargs)
|
49 |
|
@@ -323,6 +329,130 @@ class CoreAttention(torch.nn.Module):
|
|
323 |
return context_layer
|
324 |
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
class SelfAttention(torch.nn.Module):
|
327 |
"""Parallel self-attention layer abstract class.
|
328 |
|
@@ -687,12 +817,18 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
687 |
config_class = ChatGLMConfig
|
688 |
base_model_prefix = "transformer"
|
689 |
_no_split_modules = ["GLMBlock"]
|
|
|
|
|
690 |
|
691 |
def _init_weights(self, module: nn.Module):
|
692 |
"""Initialize the weights."""
|
693 |
return
|
694 |
|
695 |
def get_masks(self, input_embeds, past_key_values, padding_mask=None):
|
|
|
|
|
|
|
|
|
696 |
batch_size, seq_length, embed_size = input_embeds.shape
|
697 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_embeds.device)
|
698 |
full_attention_mask.tril_()
|
@@ -839,6 +975,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
839 |
# not allow for inputs_embeds, because we want to process image feature
|
840 |
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
841 |
if not is_empty(images): # multi-modality
|
|
|
842 |
image_size: int = self.config.vision_config['image_size']
|
843 |
patch_size: int = self.config.vision_config['patch_size']
|
844 |
num_patches = (image_size // patch_size // 2) ** 2
|
@@ -858,7 +995,8 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
858 |
self.config.eoi_token_id)
|
859 |
assert eoi_token_pos - boi_token_pos == 2
|
860 |
new_input_embeds.append(torch.cat(
|
861 |
-
(inputs_embeds[i, :boi_token_pos], images_features[i].to(inputs_embeds.device),
|
|
|
862 |
new_position_ids.append(torch.cat(
|
863 |
(position_ids[i, :boi_token_pos + 1], position_ids[i, boi_token_pos + 1].repeat(num_patches),
|
864 |
position_ids[i, eoi_token_pos:])
|
@@ -981,10 +1119,16 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
981 |
patch_size: int = self.config.vision_config['patch_size']
|
982 |
num_patches = (image_size // patch_size // 2) ** 2
|
983 |
new_attention_masks = []
|
|
|
|
|
|
|
|
|
|
|
984 |
for i in range(len(input_ids)):
|
985 |
input_id = input_ids[i].tolist()
|
986 |
-
|
987 |
-
self.config.
|
|
|
988 |
assert eoi_token_pos - boi_token_pos == 2
|
989 |
new_attention_masks.append(torch.cat(
|
990 |
(attention_mask[i, :boi_token_pos + 1], attention_mask.new_ones(num_patches),
|
|
|
21 |
SequenceClassifierOutputWithPast,
|
22 |
)
|
23 |
from transformers.modeling_utils import PreTrainedModel
|
24 |
+
from transformers.utils import logging, is_torch_npu_available, is_flash_attn_greater_or_equal_2_10, \
|
25 |
+
is_flash_attn_2_available
|
26 |
from transformers.generation.logits_process import LogitsProcessor
|
27 |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
28 |
|
29 |
from .configuration_chatglm import ChatGLMConfig
|
30 |
from .visual import EVA2CLIPModel
|
31 |
|
32 |
+
if is_flash_attn_2_available():
|
33 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
34 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
35 |
+
|
36 |
# flags required to enable jit fusion kernels
|
37 |
|
38 |
+
if sys.platform != 'darwin' and not is_torch_npu_available():
|
39 |
torch._C._jit_set_profiling_mode(False)
|
40 |
torch._C._jit_set_profiling_executor(False)
|
41 |
torch._C._jit_override_can_fuse_on_cpu(True)
|
|
|
49 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
50 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
51 |
|
52 |
+
|
53 |
def default_init(cls, *args, **kwargs):
|
54 |
return cls(*args, **kwargs)
|
55 |
|
|
|
329 |
return context_layer
|
330 |
|
331 |
|
332 |
+
class SdpaAttention(CoreAttention):
|
333 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
334 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
335 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
336 |
+
is_causal=True,
|
337 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
338 |
+
else:
|
339 |
+
if attention_mask is not None:
|
340 |
+
attention_mask = ~attention_mask
|
341 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
342 |
+
attention_mask,
|
343 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
344 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
345 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
346 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
347 |
+
return context_layer
|
348 |
+
|
349 |
+
|
350 |
+
def _get_unpad_data(attention_mask):
|
351 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
352 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
353 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
354 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
355 |
+
return (
|
356 |
+
indices,
|
357 |
+
cu_seqlens,
|
358 |
+
max_seqlen_in_batch,
|
359 |
+
)
|
360 |
+
|
361 |
+
|
362 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
|
363 |
+
class FlashAttention2(CoreAttention):
|
364 |
+
def __init__(self, *args, **kwargs):
|
365 |
+
super().__init__(*args, **kwargs)
|
366 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
367 |
+
|
368 |
+
def forward(self, query_states, key_states, value_states, attention_mask):
|
369 |
+
query_states = query_states.transpose(1, 2)
|
370 |
+
key_states = key_states.transpose(1, 2)
|
371 |
+
value_states = value_states.transpose(1, 2)
|
372 |
+
batch_size, query_length = query_states.shape[:2]
|
373 |
+
if not self._flash_attn_uses_top_left_mask:
|
374 |
+
causal = self.is_causal
|
375 |
+
else:
|
376 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
377 |
+
causal = self.is_causal and query_length != 1
|
378 |
+
dropout = self.config.attention_dropout if self.training else 0.0
|
379 |
+
# Contains at least one padding token in the sequence
|
380 |
+
if attention_mask is not None:
|
381 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
382 |
+
query_states, key_states, value_states, attention_mask, query_length
|
383 |
+
)
|
384 |
+
|
385 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
386 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
387 |
+
|
388 |
+
attn_output_unpad = flash_attn_varlen_func(
|
389 |
+
query_states,
|
390 |
+
key_states,
|
391 |
+
value_states,
|
392 |
+
cu_seqlens_q=cu_seqlens_q,
|
393 |
+
cu_seqlens_k=cu_seqlens_k,
|
394 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
395 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
396 |
+
dropout_p=dropout,
|
397 |
+
softmax_scale=None,
|
398 |
+
causal=causal,
|
399 |
+
)
|
400 |
+
|
401 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
402 |
+
else:
|
403 |
+
attn_output = flash_attn_func(
|
404 |
+
query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
|
405 |
+
)
|
406 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
|
407 |
+
return attn_output
|
408 |
+
|
409 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
410 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
411 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
412 |
+
|
413 |
+
key_layer = index_first_axis(
|
414 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
415 |
+
)
|
416 |
+
value_layer = index_first_axis(
|
417 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
418 |
+
)
|
419 |
+
if query_length == kv_seq_len:
|
420 |
+
query_layer = index_first_axis(
|
421 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
|
422 |
+
indices_k
|
423 |
+
)
|
424 |
+
cu_seqlens_q = cu_seqlens_k
|
425 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
426 |
+
indices_q = indices_k
|
427 |
+
elif query_length == 1:
|
428 |
+
max_seqlen_in_batch_q = 1
|
429 |
+
cu_seqlens_q = torch.arange(
|
430 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
431 |
+
) # There is a memcpy here, that is very bad.
|
432 |
+
indices_q = cu_seqlens_q[:-1]
|
433 |
+
query_layer = query_layer.squeeze(1)
|
434 |
+
else:
|
435 |
+
# The -q_len: slice assumes left padding.
|
436 |
+
attention_mask = attention_mask[:, -query_length:]
|
437 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
438 |
+
|
439 |
+
return (
|
440 |
+
query_layer,
|
441 |
+
key_layer,
|
442 |
+
value_layer,
|
443 |
+
indices_q,
|
444 |
+
(cu_seqlens_q, cu_seqlens_k),
|
445 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
446 |
+
)
|
447 |
+
|
448 |
+
|
449 |
+
CORE_ATTENTION_CLASSES = {
|
450 |
+
"eager": CoreAttention,
|
451 |
+
"sdpa": SdpaAttention,
|
452 |
+
"flash_attention_2": FlashAttention2
|
453 |
+
}
|
454 |
+
|
455 |
+
|
456 |
class SelfAttention(torch.nn.Module):
|
457 |
"""Parallel self-attention layer abstract class.
|
458 |
|
|
|
817 |
config_class = ChatGLMConfig
|
818 |
base_model_prefix = "transformer"
|
819 |
_no_split_modules = ["GLMBlock"]
|
820 |
+
_supports_flash_attn_2 = True
|
821 |
+
_supports_sdpa = True
|
822 |
|
823 |
def _init_weights(self, module: nn.Module):
|
824 |
"""Initialize the weights."""
|
825 |
return
|
826 |
|
827 |
def get_masks(self, input_embeds, past_key_values, padding_mask=None):
|
828 |
+
if self.config._attn_implementation == "flash_attention_2":
|
829 |
+
if padding_mask is not None and not padding_mask.all():
|
830 |
+
return padding_mask
|
831 |
+
return None
|
832 |
batch_size, seq_length, embed_size = input_embeds.shape
|
833 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_embeds.device)
|
834 |
full_attention_mask.tril_()
|
|
|
975 |
# not allow for inputs_embeds, because we want to process image feature
|
976 |
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
977 |
if not is_empty(images): # multi-modality
|
978 |
+
|
979 |
image_size: int = self.config.vision_config['image_size']
|
980 |
patch_size: int = self.config.vision_config['patch_size']
|
981 |
num_patches = (image_size // patch_size // 2) ** 2
|
|
|
995 |
self.config.eoi_token_id)
|
996 |
assert eoi_token_pos - boi_token_pos == 2
|
997 |
new_input_embeds.append(torch.cat(
|
998 |
+
(inputs_embeds[i, :boi_token_pos], images_features[i].to(inputs_embeds.device),
|
999 |
+
inputs_embeds[i, eoi_token_pos + 1:])))
|
1000 |
new_position_ids.append(torch.cat(
|
1001 |
(position_ids[i, :boi_token_pos + 1], position_ids[i, boi_token_pos + 1].repeat(num_patches),
|
1002 |
position_ids[i, eoi_token_pos:])
|
|
|
1119 |
patch_size: int = self.config.vision_config['patch_size']
|
1120 |
num_patches = (image_size // patch_size // 2) ** 2
|
1121 |
new_attention_masks = []
|
1122 |
+
|
1123 |
+
# if not image, use this default id
|
1124 |
+
eoi_token_pos = 6
|
1125 |
+
boi_token_pos = 4
|
1126 |
+
|
1127 |
for i in range(len(input_ids)):
|
1128 |
input_id = input_ids[i].tolist()
|
1129 |
+
if not is_empty(images):
|
1130 |
+
boi_token_pos, eoi_token_pos = input_id.index(self.config.boi_token_id), input_id.index(
|
1131 |
+
self.config.eoi_token_id)
|
1132 |
assert eoi_token_pos - boi_token_pos == 2
|
1133 |
new_attention_masks.append(torch.cat(
|
1134 |
(attention_mask[i, :boi_token_pos + 1], attention_mask.new_ones(num_patches),
|