|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- THUdyh/Oryx-SFT-Data |
|
base_model: |
|
- 01-ai/Yi-1.5-34B |
|
pipeline_tag: text-generation |
|
language: |
|
- en |
|
- zh |
|
--- |
|
|
|
# Oryx-34B |
|
|
|
## Model Summary |
|
|
|
The Oryx models are 7/34B parameter models trained on [Oryx-SFT-Data](https://huggingface.co/datasets/THUdyh/Oryx-SFT-Data), based on Qwen2 language model with a context window of 32K tokens. |
|
|
|
Oryx offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths. |
|
|
|
- **Repository:** https://github.com/Oryx-mllm/Oryx |
|
- **Languages:** English, Chinese |
|
- **Paper:** https://arxiv.org/abs/2409.12961 |
|
|
|
## Use |
|
|
|
We provide a simple generation process for using our model. For more details, please refer to our [Github Repo](https://github.com/liuzuyan/oryx) |
|
|
|
``` |
|
from oryx.model.builder import load_pretrained_model |
|
from oryx.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token |
|
from oryx.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX |
|
from oryx.conversation import conv_templates, SeparatorStyle |
|
from PIL import Image |
|
import requests |
|
import copy |
|
import torch |
|
import sys |
|
import warnings |
|
from decord import VideoReader, cpu |
|
import numpy as np |
|
|
|
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False): |
|
if max_frames_num == 0: |
|
return np.zeros((1, 336, 336, 3)) |
|
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1) |
|
total_frame_num = len(vr) |
|
video_time = total_frame_num / vr.get_avg_fps() |
|
fps = round(vr.get_avg_fps()/fps) |
|
frame_idx = [i for i in range(0, len(vr), fps)] |
|
frame_time = [i/fps for i in frame_idx] |
|
if len(frame_idx) > max_frames_num or force_sample: |
|
sample_fps = max_frames_num |
|
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) |
|
frame_idx = uniform_sampled_frames.tolist() |
|
frame_time = [i/vr.get_avg_fps() for i in frame_idx] |
|
frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) |
|
spare_frames = vr.get_batch(frame_idx).asnumpy() |
|
# import pdb;pdb.set_trace() |
|
return spare_frames,frame_time,video_time |
|
pretrained = "THUdyh/Oryx-7B" |
|
model_name = "oryx_qwen" |
|
device = "cuda" |
|
device_map = "auto" |
|
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) |
|
model.eval() |
|
video_path = "" |
|
max_frames_num = "64" |
|
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True) |
|
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16() |
|
video = [video] |
|
video_data = (video, video) |
|
input_data = (video_data, (384, 384), "video") |
|
conv_template = "qwen_1_5" |
|
question = DEFAULT_IMAGE_TOKEN + "\nPlease describe this video in detail." |
|
conv = copy.deepcopy(conv_templates[conv_template]) |
|
conv.append_message(conv.roles[0], question) |
|
conv.append_message(conv.roles[1], None) |
|
prompt_question = conv.get_prompt() |
|
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) |
|
output_ids = model.generate( |
|
inputs=input_ids, |
|
images=input_data[0][0], |
|
images_highres=input_data[0][1], |
|
modalities=video_data[2], |
|
do_sample=False, |
|
temperature=0, |
|
max_new_tokens=128, |
|
use_cache=True, |
|
) |
|
|
|
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True) |
|
print(text_outputs) |
|
``` |
|
|
|
|
|
### Results |
|
|
|
#### General Video Benchmark |
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/652965773a416e1f2173443b/hKfOK0u3OXly_u4hgGLDB.png" alt="image/png" style="zoom: 33%;" /> |
|
|
|
#### Long-Form Video Understanding |
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/652965773a416e1f2173443b/Xweq9f4OWkqeVc_FZIMuO.png" alt="image/png" style="zoom:33%;" /> |
|
|
|
#### Common Image Benchmark |
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/652965773a416e1f2173443b/ybfroSA9WaKXtJbP_9cLR.png" alt="image/png" style="zoom:33%;" /> |
|
|
|
#### 3D Spatial Understanding |
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/652965773a416e1f2173443b/5v8ACRzAoKS0FbcVBXZhT.png" alt="image/png" style="zoom:33%;" /> |
|
|
|
|
|
|
|
### Model Architecture |
|
|
|
- **Architecture:** Pre-trained [Oryx-ViT](https://huggingface.co/THUdyh/Oryx-ViT) + Yi-1.5-34B |
|
- **Init Model:** [Oryx-34B-Image](https://huggingface.co/THUdyh/Oryx-34B-Image) |
|
- **Data:** a mixture of 1.2M image/video data |
|
- **Precision:** BFloat16 |
|
|
|
#### Hardware & Software |
|
|
|
- **Hardware:** 64 * NVIDIA Tesla A100 |
|
- **Orchestration:** HuggingFace Trainer |
|
- **Code:** Pytorch |
|
|
|
## Citation |