|
--- |
|
license: llama3 |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
tags: |
|
- alignment_handbook-handbook |
|
- generated_from_trainer |
|
datasets: |
|
- princeton-nlp/llama3-ultrafeedback |
|
model-index: |
|
- name: Meta-Llama-3-8B-Instruct-6e-7 |
|
results: [] |
|
--- |
|
|
|
|
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2416 |
|
- Rewards/chosen: -0.3361 |
|
- Rewards/rejected: -0.4013 |
|
- Rewards/accuracies: 0.5915 |
|
- Rewards/margins: 0.0652 |
|
- Logps/rejected: -0.4013 |
|
- Logps/chosen: -0.3361 |
|
- Logits/rejected: 0.0031 |
|
- Logits/chosen: 0.0123 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-07 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 1.2443 | 0.8550 | 400 | 1.2416 | -0.3361 | -0.4013 | 0.5915 | 0.0652 | -0.4013 | -0.3361 | 0.0031 | 0.0123 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.19.1 |
|
|