File size: 14,396 Bytes
a927507
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d782928c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d78292950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d782929e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d78292a70>", "_build": "<function ActorCriticPolicy._build at 0x7f9d78292b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d78292b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d78292c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d78292cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d78292d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d78292dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d78292e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d782e27b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669079263595389328, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObdMb0pCFe6RYZOOt4Zf7N5MMu5KptuuQAAgD8AAIA/vTNYvlSrgz+clzS9z9dbvtHkub7O3ty8AAAAAAAAAABmu24+kYw2vfM+ub28I3q+dZOivsCeN78AAIA/AACAP4C3Hz08ZLI+foqzPcVKKL46UKa8Dly0PQAAAAAAAAAAbRmsPpI09zxd4LM50/0eOJoQHT7r4tW4AACAPwAAgD8AUyS9y6oxP3LOdz25Xiq+LVgbPVXCe70AAAAAAAAAAADKeDyPkju6IqVPOyAQMjcH/X874y5xugAAgD8AAIA/c7NHvlLYrj/5MgC/NFXXvfUdjr6L7K6+AAAAAAAAAACzObw9EHGoP+oDIz/QBqC+kw5AvOPc2j0AAAAAAAAAAGbgPbxdweg+moe0OpZWQb5P/MS8aaEzvQAAAAAAAAAAM9s9vhXLkz8JEge+J209vp0ThL7b2Jw9AAAAAAAAAADNS4k+3TKfP6wEwT6mT8q+7lKvPgMBGjwAAAAAAAAAAB7Sgr4QDRE/5RY3PHJrLr5avyO9oEZnPQAAAAAAAAAALRByPnJYXj/H8Ki9k7SSvg4+RD4m2YK+AAAAAAAAAAAA0sO89sxXuqp7QTsEamK1Zm1TOn4JX7QAAIA/AACAP4CkoL0UEIi64t4OO/6yQTi4WJS64dGquQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDVTGv8/qV0CUhpRSlIwBbJRN6AOMAXSUR0CNO1+6y0KJdX2UKGgGaAloD0MIh/4JLlbcYECUhpRSlGgVTegDaBZHQI1CXXsgMc91fZQoaAZoCWgPQwhNnx1wXaNfQJSGlFKUaBVN6ANoFkdAjVB1ARkEtHV9lChoBmgJaA9DCOHx7V2Dll1AlIaUUpRoFU3oA2gWR0CNU/SflIVedX2UKGgGaAloD0MIGuHtQQiEUUCUhpRSlGgVTegDaBZHQI1YziVB2Oh1fZQoaAZoCWgPQwhwQiECDpk7wJSGlFKUaBVNmQFoFkdAjWdVAZ88cXV9lChoBmgJaA9DCMKJ6NfWGVVAlIaUUpRoFU3oA2gWR0CNahtqHoHLdX2UKGgGaAloD0MI2e2zykycWkCUhpRSlGgVTegDaBZHQI2YMlZ5iVl1fZQoaAZoCWgPQwgs19tmKqxSQJSGlFKUaBVN6ANoFkdAjZtjVQQ+U3V9lChoBmgJaA9DCF+4c2GkQzJAlIaUUpRoFU0UAWgWR0CNnZ5ckdFOdX2UKGgGaAloD0MI98ySALXgYkCUhpRSlGgVTegDaBZHQI2s9BKL8791fZQoaAZoCWgPQwh8RiI0guU+QJSGlFKUaBVN6ANoFkdAjbNq1og3cnV9lChoBmgJaA9DCIaOHVTi7VZAlIaUUpRoFU3oA2gWR0CNxOoVmBe5dX2UKGgGaAloD0MI1Jy8yARQWECUhpRSlGgVTegDaBZHQI3KlUlzEJl1fZQoaAZoCWgPQwjjpZvEIOhJwJSGlFKUaBVNBgFoFkdAjd1HRLK3eHV9lChoBmgJaA9DCMFWCRaH4FJAlIaUUpRoFU3oA2gWR0CN3XTHbRF7dX2UKGgGaAloD0MILSeh9IW7V0CUhpRSlGgVTegDaBZHQI3rE0HhS+B1fZQoaAZoCWgPQwhh/DTuzdlOQJSGlFKUaBVN6ANoFkdAjfIFwT/Q0HV9lChoBmgJaA9DCAMixJWzvFtAlIaUUpRoFU3oA2gWR0CN9d1dxAB1dX2UKGgGaAloD0MI/kemQ6djRkCUhpRSlGgVTegDaBZHQI39NCqp97Z1fZQoaAZoCWgPQwiln3B2a69aQJSGlFKUaBVN6ANoFkdAjg+QTdtVJnV9lChoBmgJaA9DCMsUcxB0TExAlIaUUpRoFU3oA2gWR0COFOh5gPVedX2UKGgGaAloD0MIob36eOiFXkCUhpRSlGgVTegDaBZHQI4krVawD/51fZQoaAZoCWgPQwhlbynni0RTQJSGlFKUaBVN6ANoFkdAjifBE8aGYnV9lChoBmgJaA9DCG6I8ZpXNlRAlIaUUpRoFU3oA2gWR0COWXsVLzwudX2UKGgGaAloD0MIBRiWP9+UV0CUhpRSlGgVTegDaBZHQI5e/Bk7Oml1fZQoaAZoCWgPQwhOQukLITZYQJSGlFKUaBVN6ANoFkdAjmKybYsd1nV9lChoBmgJaA9DCPJfIAiQf2FAlIaUUpRoFU3oA2gWR0COebgH/tIDdX2UKGgGaAloD0MIZcQFoFFhU0CUhpRSlGgVTegDaBZHQI6SvjOs1bd1fZQoaAZoCWgPQwitodRexJVhQJSGlFKUaBVN6ANoFkdAjpiu6mO2iXV9lChoBmgJaA9DCFU01v7OPFpAlIaUUpRoFU3oA2gWR0COrLHwPRRedX2UKGgGaAloD0MIJA9EFmnJYECUhpRSlGgVTegDaBZHQI6s5uIhyKh1fZQoaAZoCWgPQwjXTL7Z5kxYQJSGlFKUaBVN6ANoFkdAjrstzr/sFHV9lChoBmgJaA9DCE2jycUY5l1AlIaUUpRoFU3oA2gWR0COwk9Mbm2cdX2UKGgGaAloD0MI3ZbIBWegXkCUhpRSlGgVTegDaBZHQI7GEYKpkwx1fZQoaAZoCWgPQwh0tKolHVFMQJSGlFKUaBVN6ANoFkdAjs0/yXlbNnV9lChoBmgJaA9DCENXIlD9gVVAlIaUUpRoFU3oA2gWR0CO3ykIomXxdX2UKGgGaAloD0MIzHoxlBOTUECUhpRSlGgVTegDaBZHQI7kAHNX5nF1fZQoaAZoCWgPQwjC+j+HeZZhQJSGlFKUaBVN6ANoFkdAjvKHE2pAEHV9lChoBmgJaA9DCKPp7GTw8GFAlIaUUpRoFU3oA2gWR0CO9Ylgtvn9dX2UKGgGaAloD0MIFqQZi6Y3XkCUhpRSlGgVTegDaBZHQI8lDtG/etV1fZQoaAZoCWgPQwgmNEksKRRYQJSGlFKUaBVN6ANoFkdAjyi/IsAeaXV9lChoBmgJaA9DCJ8FobyPVlZAlIaUUpRoFU3oA2gWR0CPKyliz9jxdX2UKGgGaAloD0MI+imOA6+1YkCUhpRSlGgVTYcDaBZHQI8tYPRRdhR1fZQoaAZoCWgPQwhq2VpfpKRiQJSGlFKUaBVN6ANoFkdAj1ZmKIi1RnV9lChoBmgJaA9DCBKlvcEXgVpAlIaUUpRoFU3oA2gWR0CPXPDdgv12dX2UKGgGaAloD0MI++dpwCDbWUCUhpRSlGgVTegDaBZHQI9yjSy+pOx1fZQoaAZoCWgPQwg1fAvrxgtVQJSGlFKUaBVN6ANoFkdAj3LJpvgm7nV9lChoBmgJaA9DCMKE0axsPlZAlIaUUpRoFU3oA2gWR0CPgkDZlFtsdX2UKGgGaAloD0MItoR80LNDXECUhpRSlGgVTegDaBZHQI+KEUEgW8B1fZQoaAZoCWgPQwjnq+Rjd6tWQJSGlFKUaBVN6ANoFkdAj44d4mkWRHV9lChoBmgJaA9DCLgDdcqjG72/lIaUUpRoFU1hAWgWR0CPlbqMWGh3dX2UKGgGaAloD0MIPx9lxAVDY0CUhpRSlGgVTegDaBZHQI+V6zeGfwt1fZQoaAZoCWgPQwhE4EigwVVXQJSGlFKUaBVN6ANoFkdAj6hLHlwLmnV9lChoBmgJaA9DCFz/rs+cs1lAlIaUUpRoFU3oA2gWR0CPrYl0o0AMdX2UKGgGaAloD0MI7Sqk/KT2YUCUhpRSlGgVTegDaBZHQI+9xvWH1vl1fZQoaAZoCWgPQwjHZkeq7/daQJSGlFKUaBVN6ANoFkdAj8EQ1ivxIHV9lChoBmgJaA9DCG73cp8ct1xAlIaUUpRoFU3oA2gWR0CPywKziS7odX2UKGgGaAloD0MIqfkq+dhd+7+UhpRSlGgVTVkBaBZHQI/M2DHwPRR1fZQoaAZoCWgPQwi/ZU6XxUtcQJSGlFKUaBVN6ANoFkdAj/W+Bg/kenV9lChoBmgJaA9DCN1hE5m56kXAlIaUUpRoFU13AWgWR0CP+P4Kx9ofdX2UKGgGaAloD0MIiC6ob5nTWECUhpRSlGgVTegDaBZHQI/5CcslLOB1fZQoaAZoCWgPQwjekEYFTmJMQJSGlFKUaBVN6ANoFkdAj/urBsQ/YHV9lChoBmgJaA9DCBxeEJGaBhjAlIaUUpRoFU0gAWgWR0CQDTzND+irdX2UKGgGaAloD0MIoKnXLQKnNMCUhpRSlGgVTSEBaBZHQJAVECjk+5h1fZQoaAZoCWgPQwimCkYldSJZQJSGlFKUaBVN6ANoFkdAkBaNQoCuEHV9lChoBmgJaA9DCCuJ7IMs3lVAlIaUUpRoFU3oA2gWR0CQIC6F/QSjdX2UKGgGaAloD0MIvf+PEyZaXUCUhpRSlGgVTegDaBZHQJAgR9srNGF1fZQoaAZoCWgPQwjtDikGSHZeQJSGlFKUaBVN6ANoFkdAkCcX84xUN3V9lChoBmgJaA9DCFLt0/GYHTLAlIaUUpRoFUvuaBZHQJAok3irDIl1fZQoaAZoCWgPQwi9UpYhjuFZQJSGlFKUaBVN6ANoFkdAkCpgJw84gnV9lChoBmgJaA9DCHY3T3XIbFVAlIaUUpRoFU3oA2gWR0CQLDMCcPOIdX2UKGgGaAloD0MI5j+k375gSsCUhpRSlGgVS/poFkdAkDMVtO2y9nV9lChoBmgJaA9DCAHaVrPOxl9AlIaUUpRoFU3oA2gWR0CQOPxi5NGmdX2UKGgGaAloD0MIq+l6omujYUCUhpRSlGgVTegDaBZHQJA7gUVSGah1fZQoaAZoCWgPQwgJ/Uy9bn1JwJSGlFKUaBVNIQFoFkdAkEG9qDbrT3V9lChoBmgJaA9DCA+AuKtXBl9AlIaUUpRoFU3oA2gWR0CQQr8hLXcydX2UKGgGaAloD0MIU1p/SwC3bUCUhpRSlGgVTZUBaBZHQJBIfpUxVQ11fZQoaAZoCWgPQwge3941aABhQJSGlFKUaBVN6ANoFkdAkEitYr8R+XV9lChoBmgJaA9DCIuKOJ1kOltAlIaUUpRoFU3oA2gWR0CQSYAZKnNxdX2UKGgGaAloD0MIBcO5hhlRWkCUhpRSlGgVTegDaBZHQJBKTUpd8iR1fZQoaAZoCWgPQwjuCKcFLy1iQJSGlFKUaBVN6ANoFkdAkEtvPX05EXV9lChoBmgJaA9DCDS/mgOE2GFAlIaUUpRoFU3oA2gWR0CQX5b5uZTidX2UKGgGaAloD0MIhslUwSj4YECUhpRSlGgVTegDaBZHQJBqzpr1uix1fZQoaAZoCWgPQwjiPQeWI/FfQJSGlFKUaBVN6ANoFkdAkHTTbvgFYHV9lChoBmgJaA9DCOfEHtrHAF9AlIaUUpRoFU3oA2gWR0CQfyckt29tdX2UKGgGaAloD0MID2CRXz8aXkCUhpRSlGgVTegDaBZHQJCG2us90Rx1fZQoaAZoCWgPQwhTliGOdcZgQJSGlFKUaBVN6ANoFkdAkIiRKg7HQ3V9lChoBmgJaA9DCFD8GHNXt2BAlIaUUpRoFU3oA2gWR0CQlJZwn6VMdX2UKGgGaAloD0MIOL2L9+MFYECUhpRSlGgVTegDaBZHQJCbP7m+0w91fZQoaAZoCWgPQwidY0D2eqxgQJSGlFKUaBVN6ANoFkdAkJ4FLWZqmHV9lChoBmgJaA9DCNANTdnpB/Y/lIaUUpRoFU0UAWgWR0CQn9OMVDa5dX2UKGgGaAloD0MIIa8Hk+LdXUCUhpRSlGgVTegDaBZHQJClAR02cax1fZQoaAZoCWgPQwguqkVEsc9iQJSGlFKUaBVN6ANoFkdAkKYmhysCDHV9lChoBmgJaA9DCPXabKzEj1tAlIaUUpRoFU3oA2gWR0CQrIWdEsredX2UKGgGaAloD0MIB7R0BduwVECUhpRSlGgVTegDaBZHQJCsuLzf7791fZQoaAZoCWgPQwhsy4CzlANhQJSGlFKUaBVN6ANoFkdAkK20DdP+GXV9lChoBmgJaA9DCOnSvySVwF9AlIaUUpRoFU3oA2gWR0CQrvYfnwG4dX2UKGgGaAloD0MIzuFa7WEJVkCUhpRSlGgVTegDaBZHQJCwqzAvcrR1fZQoaAZoCWgPQwjhB+dTx3ljQJSGlFKUaBVN6ANoFkdAkLIyyQgcLnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}