Teapack1's picture
End of training
4eb1afd
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-minds14
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: MINDS14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5263157894736842

distilhubert-finetuned-minds14

This model is a fine-tuned version of ntu-spml/distilhubert on the MINDS14 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4050
  • Accuracy: 0.5263

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.6434 1.0 253 2.6398 0.0702
2.5451 2.0 506 2.6434 0.0877
2.5303 3.0 759 2.6009 0.0702
2.5841 4.0 1012 2.5143 0.1053
2.1201 5.0 1265 2.3397 0.1579
1.6421 6.0 1518 2.1145 0.3509
1.5245 7.0 1771 1.9039 0.4386
1.1713 8.0 2024 1.6985 0.3684
1.1484 9.0 2277 1.5798 0.5088
0.6891 10.0 2530 1.7365 0.4912
0.3124 11.0 2783 1.8768 0.4561
0.077 12.0 3036 2.2095 0.4386
0.0167 13.0 3289 2.3894 0.4912
0.1748 14.0 3542 2.1305 0.5789
0.0366 15.0 3795 2.2102 0.5614
0.0021 16.0 4048 2.2237 0.5614
0.0012 17.0 4301 2.3768 0.5263
0.0009 18.0 4554 2.6185 0.4912
0.0006 19.0 4807 2.5854 0.5263
0.0005 20.0 5060 2.6191 0.5965
0.0004 21.0 5313 2.6767 0.5789
0.0004 22.0 5566 2.7203 0.5965
0.0003 23.0 5819 2.6451 0.5965
0.0003 24.0 6072 2.6883 0.5965
0.0002 25.0 6325 2.7872 0.5789
0.0002 26.0 6578 2.8503 0.5789
0.0002 27.0 6831 2.8895 0.5789
0.0001 28.0 7084 2.8882 0.5789
0.0001 29.0 7337 2.8726 0.5439
0.0001 30.0 7590 2.8971 0.5614
0.0001 31.0 7843 2.9427 0.5614
0.0001 32.0 8096 3.0154 0.5439
0.0001 33.0 8349 3.0109 0.5439
0.0001 34.0 8602 3.0281 0.5439
0.0001 35.0 8855 3.0510 0.5439
0.0001 36.0 9108 3.1110 0.5439
0.0001 37.0 9361 3.1634 0.5439
0.0 38.0 9614 3.1704 0.5263
0.0 39.0 9867 3.2145 0.5263
0.0 40.0 10120 3.2405 0.5439
0.0 41.0 10373 3.2725 0.5263
0.0 42.0 10626 3.2861 0.5263
0.0 43.0 10879 3.3515 0.5263
0.0 44.0 11132 3.3364 0.5263
0.0 45.0 11385 3.3570 0.5263
0.0 46.0 11638 3.3776 0.5263
0.0 47.0 11891 3.3857 0.5263
0.0 48.0 12144 3.3985 0.5263
0.0 49.0 12397 3.4012 0.5263
0.0 50.0 12650 3.4050 0.5263

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0