|
--- |
|
license: creativeml-openrail-m |
|
base_model: "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS" |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- full |
|
|
|
inference: true |
|
widget: |
|
- text: 'unconditional (blank prompt)' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_0_0.png |
|
- text: 'ethnographic photography of teddy bear at a picnic' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_1_0.png |
|
--- |
|
|
|
# pixart-training |
|
|
|
This is a full rank finetune derived from [PixArt-alpha/PixArt-Sigma-XL-2-1024-MS](https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS). |
|
|
|
|
|
|
|
The main validation prompt used during training was: |
|
|
|
``` |
|
ethnographic photography of teddy bear at a picnic |
|
``` |
|
|
|
## Validation settings |
|
- CFG: `7.5` |
|
- CFG Rescale: `0.0` |
|
- Steps: `30` |
|
- Sampler: `euler` |
|
- Seed: `42` |
|
- Resolution: `1024` |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 0 |
|
- Training steps: 1000 |
|
- Learning rate: 8e-06 |
|
- Effective batch size: 96 |
|
- Micro-batch size: 32 |
|
- Gradient accumulation steps: 3 |
|
- Number of GPUs: 1 |
|
- Prediction type: epsilon |
|
- Rescaled betas zero SNR: False |
|
- Optimizer: AdamW, stochastic bf16 |
|
- Precision: Pure BF16 |
|
- Xformers: Enabled |
|
|
|
|
|
## Datasets |
|
|
|
### mj-v6 |
|
- Repeats: 0 |
|
- Total number of images: 199872 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 1.0 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
|
|
model_id = "pixart-training" |
|
prompt = "ethnographic photography of teddy bear at a picnic" |
|
negative_prompt = "malformed, disgusting, overexposed, washed-out" |
|
|
|
pipeline = DiffusionPipeline.from_pretrained(model_id) |
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') |
|
image = pipeline( |
|
prompt=prompt, |
|
negative_prompt='blurry, cropped, ugly', |
|
num_inference_steps=30, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), |
|
width=1152, |
|
height=768, |
|
guidance_scale=7.5, |
|
guidance_rescale=0.0, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|