language:
- en
license: apache-2.0
model-index:
- name: gte-base-en-v1.5
results:
- dataset:
config: en
name: MTEB AmazonCounterfactualClassification (en)
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: test
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 74.7910447761194
- type: ap
value: 37.053785713650626
- type: f1
value: 68.51101510998551
task:
type: Classification
- dataset:
config: default
name: MTEB AmazonPolarityClassification
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
split: test
type: mteb/amazon_polarity
metrics:
- type: accuracy
value: 93.016875
- type: ap
value: 89.17750268426342
- type: f1
value: 92.9970977240524
task:
type: Classification
- dataset:
config: en
name: MTEB AmazonReviewsClassification (en)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 53.312000000000005
- type: f1
value: 52.98175784163017
task:
type: Classification
- dataset:
config: default
name: MTEB ArguAna
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
split: test
type: mteb/arguana
metrics:
- type: map_at_1
value: 38.193
- type: map_at_10
value: 54.848
- type: map_at_100
value: 55.388000000000005
- type: map_at_1000
value: 55.388999999999996
- type: map_at_3
value: 50.427
- type: map_at_5
value: 53.105000000000004
- type: mrr_at_1
value: 39.047
- type: mrr_at_10
value: 55.153
- type: mrr_at_100
value: 55.686
- type: mrr_at_1000
value: 55.688
- type: mrr_at_3
value: 50.676
- type: mrr_at_5
value: 53.417
- type: ndcg_at_1
value: 38.193
- type: ndcg_at_10
value: 63.486
- type: ndcg_at_100
value: 65.58
- type: ndcg_at_1000
value: 65.61
- type: ndcg_at_3
value: 54.494
- type: ndcg_at_5
value: 59.339
- type: precision_at_1
value: 38.193
- type: precision_at_10
value: 9.075
- type: precision_at_100
value: 0.9939999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 22.096
- type: precision_at_5
value: 15.619
- type: recall_at_1
value: 38.193
- type: recall_at_10
value: 90.754
- type: recall_at_100
value: 99.431
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 66.28699999999999
- type: recall_at_5
value: 78.094
task:
type: Retrieval
- dataset:
config: default
name: MTEB ArxivClusteringP2P
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
split: test
type: mteb/arxiv-clustering-p2p
metrics:
- type: v_measure
value: 47.508221208908964
task:
type: Clustering
- dataset:
config: default
name: MTEB ArxivClusteringS2S
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
split: test
type: mteb/arxiv-clustering-s2s
metrics:
- type: v_measure
value: 42.04668382560096
task:
type: Clustering
- dataset:
config: default
name: MTEB AskUbuntuDupQuestions
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
split: test
type: mteb/askubuntudupquestions-reranking
metrics:
- type: map
value: 61.828759903716815
- type: mrr
value: 74.37343358395991
task:
type: Reranking
- dataset:
config: default
name: MTEB BIOSSES
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
split: test
type: mteb/biosses-sts
metrics:
- type: cos_sim_pearson
value: 85.03673698773017
- type: cos_sim_spearman
value: 83.6470866785058
- type: euclidean_pearson
value: 82.64048673096565
- type: euclidean_spearman
value: 83.63142367101115
- type: manhattan_pearson
value: 82.71493099760228
- type: manhattan_spearman
value: 83.60491704294326
task:
type: STS
- dataset:
config: default
name: MTEB Banking77Classification
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
split: test
type: mteb/banking77
metrics:
- type: accuracy
value: 86.73376623376623
- type: f1
value: 86.70294049278262
task:
type: Classification
- dataset:
config: default
name: MTEB BiorxivClusteringP2P
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
split: test
type: mteb/biorxiv-clustering-p2p
metrics:
- type: v_measure
value: 40.31923804167062
task:
type: Clustering
- dataset:
config: default
name: MTEB BiorxivClusteringS2S
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
split: test
type: mteb/biorxiv-clustering-s2s
metrics:
- type: v_measure
value: 37.552547125348454
task:
type: Clustering
- dataset:
config: default
name: MTEB CQADupstackAndroidRetrieval
revision: f46a197baaae43b4f621051089b82a364682dfeb
split: test
type: mteb/cqadupstack-android
metrics:
- type: map_at_1
value: 30.567
- type: map_at_10
value: 41.269
- type: map_at_100
value: 42.689
- type: map_at_1000
value: 42.84
- type: map_at_3
value: 37.567
- type: map_at_5
value: 39.706
- type: mrr_at_1
value: 37.053000000000004
- type: mrr_at_10
value: 46.900999999999996
- type: mrr_at_100
value: 47.662
- type: mrr_at_1000
value: 47.713
- type: mrr_at_3
value: 43.801
- type: mrr_at_5
value: 45.689
- type: ndcg_at_1
value: 37.053000000000004
- type: ndcg_at_10
value: 47.73
- type: ndcg_at_100
value: 53.128
- type: ndcg_at_1000
value: 55.300000000000004
- type: ndcg_at_3
value: 42.046
- type: ndcg_at_5
value: 44.782
- type: precision_at_1
value: 37.053000000000004
- type: precision_at_10
value: 9.142
- type: precision_at_100
value: 1.485
- type: precision_at_1000
value: 0.197
- type: precision_at_3
value: 20.076
- type: precision_at_5
value: 14.535
- type: recall_at_1
value: 30.567
- type: recall_at_10
value: 60.602999999999994
- type: recall_at_100
value: 83.22800000000001
- type: recall_at_1000
value: 96.696
- type: recall_at_3
value: 44.336999999999996
- type: recall_at_5
value: 51.949
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackEnglishRetrieval
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
split: test
type: mteb/cqadupstack-english
metrics:
- type: map_at_1
value: 28.538000000000004
- type: map_at_10
value: 38.757999999999996
- type: map_at_100
value: 40.129
- type: map_at_1000
value: 40.262
- type: map_at_3
value: 35.866
- type: map_at_5
value: 37.417
- type: mrr_at_1
value: 36.051
- type: mrr_at_10
value: 44.868
- type: mrr_at_100
value: 45.568999999999996
- type: mrr_at_1000
value: 45.615
- type: mrr_at_3
value: 42.558
- type: mrr_at_5
value: 43.883
- type: ndcg_at_1
value: 36.051
- type: ndcg_at_10
value: 44.584
- type: ndcg_at_100
value: 49.356
- type: ndcg_at_1000
value: 51.39
- type: ndcg_at_3
value: 40.389
- type: ndcg_at_5
value: 42.14
- type: precision_at_1
value: 36.051
- type: precision_at_10
value: 8.446
- type: precision_at_100
value: 1.411
- type: precision_at_1000
value: 0.19
- type: precision_at_3
value: 19.639
- type: precision_at_5
value: 13.796
- type: recall_at_1
value: 28.538000000000004
- type: recall_at_10
value: 54.99000000000001
- type: recall_at_100
value: 75.098
- type: recall_at_1000
value: 87.848
- type: recall_at_3
value: 42.236000000000004
- type: recall_at_5
value: 47.377
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackGamingRetrieval
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
split: test
type: mteb/cqadupstack-gaming
metrics:
- type: map_at_1
value: 37.188
- type: map_at_10
value: 50.861000000000004
- type: map_at_100
value: 51.917
- type: map_at_1000
value: 51.964999999999996
- type: map_at_3
value: 47.144000000000005
- type: map_at_5
value: 49.417
- type: mrr_at_1
value: 42.571
- type: mrr_at_10
value: 54.086999999999996
- type: mrr_at_100
value: 54.739000000000004
- type: mrr_at_1000
value: 54.762
- type: mrr_at_3
value: 51.285000000000004
- type: mrr_at_5
value: 53
- type: ndcg_at_1
value: 42.571
- type: ndcg_at_10
value: 57.282
- type: ndcg_at_100
value: 61.477000000000004
- type: ndcg_at_1000
value: 62.426
- type: ndcg_at_3
value: 51
- type: ndcg_at_5
value: 54.346000000000004
- type: precision_at_1
value: 42.571
- type: precision_at_10
value: 9.467
- type: precision_at_100
value: 1.2550000000000001
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 23.114
- type: precision_at_5
value: 16.250999999999998
- type: recall_at_1
value: 37.188
- type: recall_at_10
value: 73.068
- type: recall_at_100
value: 91.203
- type: recall_at_1000
value: 97.916
- type: recall_at_3
value: 56.552
- type: recall_at_5
value: 64.567
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackGisRetrieval
revision: 5003b3064772da1887988e05400cf3806fe491f2
split: test
type: mteb/cqadupstack-gis
metrics:
- type: map_at_1
value: 25.041000000000004
- type: map_at_10
value: 33.86
- type: map_at_100
value: 34.988
- type: map_at_1000
value: 35.064
- type: map_at_3
value: 31.049
- type: map_at_5
value: 32.845
- type: mrr_at_1
value: 26.893
- type: mrr_at_10
value: 35.594
- type: mrr_at_100
value: 36.617
- type: mrr_at_1000
value: 36.671
- type: mrr_at_3
value: 33.051
- type: mrr_at_5
value: 34.61
- type: ndcg_at_1
value: 26.893
- type: ndcg_at_10
value: 38.674
- type: ndcg_at_100
value: 44.178
- type: ndcg_at_1000
value: 46.089999999999996
- type: ndcg_at_3
value: 33.485
- type: ndcg_at_5
value: 36.402
- type: precision_at_1
value: 26.893
- type: precision_at_10
value: 5.989
- type: precision_at_100
value: 0.918
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 14.2
- type: precision_at_5
value: 10.26
- type: recall_at_1
value: 25.041000000000004
- type: recall_at_10
value: 51.666000000000004
- type: recall_at_100
value: 76.896
- type: recall_at_1000
value: 91.243
- type: recall_at_3
value: 38.035999999999994
- type: recall_at_5
value: 44.999
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackMathematicaRetrieval
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
split: test
type: mteb/cqadupstack-mathematica
metrics:
- type: map_at_1
value: 15.909999999999998
- type: map_at_10
value: 23.901
- type: map_at_100
value: 25.165
- type: map_at_1000
value: 25.291000000000004
- type: map_at_3
value: 21.356
- type: map_at_5
value: 22.816
- type: mrr_at_1
value: 20.025000000000002
- type: mrr_at_10
value: 28.382
- type: mrr_at_100
value: 29.465000000000003
- type: mrr_at_1000
value: 29.535
- type: mrr_at_3
value: 25.933
- type: mrr_at_5
value: 27.332
- type: ndcg_at_1
value: 20.025000000000002
- type: ndcg_at_10
value: 29.099000000000004
- type: ndcg_at_100
value: 35.127
- type: ndcg_at_1000
value: 38.096000000000004
- type: ndcg_at_3
value: 24.464
- type: ndcg_at_5
value: 26.709
- type: precision_at_1
value: 20.025000000000002
- type: precision_at_10
value: 5.398
- type: precision_at_100
value: 0.9690000000000001
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 11.774
- type: precision_at_5
value: 8.632
- type: recall_at_1
value: 15.909999999999998
- type: recall_at_10
value: 40.672000000000004
- type: recall_at_100
value: 66.855
- type: recall_at_1000
value: 87.922
- type: recall_at_3
value: 28.069
- type: recall_at_5
value: 33.812
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackPhysicsRetrieval
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
split: test
type: mteb/cqadupstack-physics
metrics:
- type: map_at_1
value: 30.175
- type: map_at_10
value: 41.36
- type: map_at_100
value: 42.701
- type: map_at_1000
value: 42.817
- type: map_at_3
value: 37.931
- type: map_at_5
value: 39.943
- type: mrr_at_1
value: 35.611
- type: mrr_at_10
value: 46.346
- type: mrr_at_100
value: 47.160000000000004
- type: mrr_at_1000
value: 47.203
- type: mrr_at_3
value: 43.712
- type: mrr_at_5
value: 45.367000000000004
- type: ndcg_at_1
value: 35.611
- type: ndcg_at_10
value: 47.532000000000004
- type: ndcg_at_100
value: 53.003
- type: ndcg_at_1000
value: 55.007
- type: ndcg_at_3
value: 42.043
- type: ndcg_at_5
value: 44.86
- type: precision_at_1
value: 35.611
- type: precision_at_10
value: 8.624
- type: precision_at_100
value: 1.332
- type: precision_at_1000
value: 0.169
- type: precision_at_3
value: 20.083000000000002
- type: precision_at_5
value: 14.437
- type: recall_at_1
value: 30.175
- type: recall_at_10
value: 60.5
- type: recall_at_100
value: 83.399
- type: recall_at_1000
value: 96.255
- type: recall_at_3
value: 45.448
- type: recall_at_5
value: 52.432
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackProgrammersRetrieval
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
split: test
type: mteb/cqadupstack-programmers
metrics:
- type: map_at_1
value: 22.467000000000002
- type: map_at_10
value: 33.812999999999995
- type: map_at_100
value: 35.248000000000005
- type: map_at_1000
value: 35.359
- type: map_at_3
value: 30.316
- type: map_at_5
value: 32.233000000000004
- type: mrr_at_1
value: 28.310999999999996
- type: mrr_at_10
value: 38.979
- type: mrr_at_100
value: 39.937
- type: mrr_at_1000
value: 39.989999999999995
- type: mrr_at_3
value: 36.244
- type: mrr_at_5
value: 37.871
- type: ndcg_at_1
value: 28.310999999999996
- type: ndcg_at_10
value: 40.282000000000004
- type: ndcg_at_100
value: 46.22
- type: ndcg_at_1000
value: 48.507
- type: ndcg_at_3
value: 34.596
- type: ndcg_at_5
value: 37.267
- type: precision_at_1
value: 28.310999999999996
- type: precision_at_10
value: 7.831
- type: precision_at_100
value: 1.257
- type: precision_at_1000
value: 0.164
- type: precision_at_3
value: 17.275
- type: precision_at_5
value: 12.556999999999999
- type: recall_at_1
value: 22.467000000000002
- type: recall_at_10
value: 54.14099999999999
- type: recall_at_100
value: 79.593
- type: recall_at_1000
value: 95.063
- type: recall_at_3
value: 38.539
- type: recall_at_5
value: 45.403
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackRetrieval
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
split: test
type: mteb/cqadupstack
metrics:
- type: map_at_1
value: 24.18591666666667
- type: map_at_10
value: 33.84258333333333
- type: map_at_100
value: 35.11391666666666
- type: map_at_1000
value: 35.23258333333333
- type: map_at_3
value: 30.764249999999997
- type: map_at_5
value: 32.52333333333334
- type: mrr_at_1
value: 28.54733333333333
- type: mrr_at_10
value: 37.81725
- type: mrr_at_100
value: 38.716499999999996
- type: mrr_at_1000
value: 38.77458333333333
- type: mrr_at_3
value: 35.157833333333336
- type: mrr_at_5
value: 36.69816666666667
- type: ndcg_at_1
value: 28.54733333333333
- type: ndcg_at_10
value: 39.51508333333334
- type: ndcg_at_100
value: 44.95316666666666
- type: ndcg_at_1000
value: 47.257083333333334
- type: ndcg_at_3
value: 34.205833333333324
- type: ndcg_at_5
value: 36.78266666666667
- type: precision_at_1
value: 28.54733333333333
- type: precision_at_10
value: 7.082583333333334
- type: precision_at_100
value: 1.1590833333333332
- type: precision_at_1000
value: 0.15516666666666662
- type: precision_at_3
value: 15.908750000000001
- type: precision_at_5
value: 11.505416666666669
- type: recall_at_1
value: 24.18591666666667
- type: recall_at_10
value: 52.38758333333333
- type: recall_at_100
value: 76.13666666666667
- type: recall_at_1000
value: 91.99066666666667
- type: recall_at_3
value: 37.78333333333334
- type: recall_at_5
value: 44.30141666666666
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackStatsRetrieval
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
split: test
type: mteb/cqadupstack-stats
metrics:
- type: map_at_1
value: 21.975
- type: map_at_10
value: 29.781000000000002
- type: map_at_100
value: 30.847
- type: map_at_1000
value: 30.94
- type: map_at_3
value: 27.167
- type: map_at_5
value: 28.633999999999997
- type: mrr_at_1
value: 24.387
- type: mrr_at_10
value: 32.476
- type: mrr_at_100
value: 33.337
- type: mrr_at_1000
value: 33.403
- type: mrr_at_3
value: 29.881999999999998
- type: mrr_at_5
value: 31.339
- type: ndcg_at_1
value: 24.387
- type: ndcg_at_10
value: 34.596
- type: ndcg_at_100
value: 39.635
- type: ndcg_at_1000
value: 42.079
- type: ndcg_at_3
value: 29.516
- type: ndcg_at_5
value: 31.959
- type: precision_at_1
value: 24.387
- type: precision_at_10
value: 5.6129999999999995
- type: precision_at_100
value: 0.8909999999999999
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 12.73
- type: precision_at_5
value: 9.171999999999999
- type: recall_at_1
value: 21.975
- type: recall_at_10
value: 46.826
- type: recall_at_100
value: 69.554
- type: recall_at_1000
value: 87.749
- type: recall_at_3
value: 33.016
- type: recall_at_5
value: 38.97
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackTexRetrieval
revision: 46989137a86843e03a6195de44b09deda022eec7
split: test
type: mteb/cqadupstack-tex
metrics:
- type: map_at_1
value: 15.614
- type: map_at_10
value: 22.927
- type: map_at_100
value: 24.185000000000002
- type: map_at_1000
value: 24.319
- type: map_at_3
value: 20.596
- type: map_at_5
value: 21.854000000000003
- type: mrr_at_1
value: 18.858
- type: mrr_at_10
value: 26.535999999999998
- type: mrr_at_100
value: 27.582
- type: mrr_at_1000
value: 27.665
- type: mrr_at_3
value: 24.295
- type: mrr_at_5
value: 25.532
- type: ndcg_at_1
value: 18.858
- type: ndcg_at_10
value: 27.583000000000002
- type: ndcg_at_100
value: 33.635
- type: ndcg_at_1000
value: 36.647
- type: ndcg_at_3
value: 23.348
- type: ndcg_at_5
value: 25.257
- type: precision_at_1
value: 18.858
- type: precision_at_10
value: 5.158
- type: precision_at_100
value: 0.964
- type: precision_at_1000
value: 0.13999999999999999
- type: precision_at_3
value: 11.092
- type: precision_at_5
value: 8.1
- type: recall_at_1
value: 15.614
- type: recall_at_10
value: 37.916
- type: recall_at_100
value: 65.205
- type: recall_at_1000
value: 86.453
- type: recall_at_3
value: 26.137
- type: recall_at_5
value: 31.087999999999997
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackUnixRetrieval
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
split: test
type: mteb/cqadupstack-unix
metrics:
- type: map_at_1
value: 23.078000000000003
- type: map_at_10
value: 31.941999999999997
- type: map_at_100
value: 33.196999999999996
- type: map_at_1000
value: 33.303
- type: map_at_3
value: 28.927000000000003
- type: map_at_5
value: 30.707
- type: mrr_at_1
value: 26.866
- type: mrr_at_10
value: 35.557
- type: mrr_at_100
value: 36.569
- type: mrr_at_1000
value: 36.632
- type: mrr_at_3
value: 32.897999999999996
- type: mrr_at_5
value: 34.437
- type: ndcg_at_1
value: 26.866
- type: ndcg_at_10
value: 37.372
- type: ndcg_at_100
value: 43.248
- type: ndcg_at_1000
value: 45.632
- type: ndcg_at_3
value: 31.852999999999998
- type: ndcg_at_5
value: 34.582
- type: precision_at_1
value: 26.866
- type: precision_at_10
value: 6.511
- type: precision_at_100
value: 1.078
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 14.582999999999998
- type: precision_at_5
value: 10.634
- type: recall_at_1
value: 23.078000000000003
- type: recall_at_10
value: 50.334
- type: recall_at_100
value: 75.787
- type: recall_at_1000
value: 92.485
- type: recall_at_3
value: 35.386
- type: recall_at_5
value: 42.225
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackWebmastersRetrieval
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
split: test
type: mteb/cqadupstack-webmasters
metrics:
- type: map_at_1
value: 22.203999999999997
- type: map_at_10
value: 31.276
- type: map_at_100
value: 32.844
- type: map_at_1000
value: 33.062999999999995
- type: map_at_3
value: 27.733999999999998
- type: map_at_5
value: 29.64
- type: mrr_at_1
value: 27.272999999999996
- type: mrr_at_10
value: 36.083
- type: mrr_at_100
value: 37.008
- type: mrr_at_1000
value: 37.076
- type: mrr_at_3
value: 33.004
- type: mrr_at_5
value: 34.664
- type: ndcg_at_1
value: 27.272999999999996
- type: ndcg_at_10
value: 37.763000000000005
- type: ndcg_at_100
value: 43.566
- type: ndcg_at_1000
value: 46.356
- type: ndcg_at_3
value: 31.673000000000002
- type: ndcg_at_5
value: 34.501
- type: precision_at_1
value: 27.272999999999996
- type: precision_at_10
value: 7.470000000000001
- type: precision_at_100
value: 1.502
- type: precision_at_1000
value: 0.24
- type: precision_at_3
value: 14.756
- type: precision_at_5
value: 11.225
- type: recall_at_1
value: 22.203999999999997
- type: recall_at_10
value: 51.437999999999995
- type: recall_at_100
value: 76.845
- type: recall_at_1000
value: 94.38600000000001
- type: recall_at_3
value: 34.258
- type: recall_at_5
value: 41.512
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackWordpressRetrieval
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
split: test
type: mteb/cqadupstack-wordpress
metrics:
- type: map_at_1
value: 17.474
- type: map_at_10
value: 26.362999999999996
- type: map_at_100
value: 27.456999999999997
- type: map_at_1000
value: 27.567999999999998
- type: map_at_3
value: 23.518
- type: map_at_5
value: 25.068
- type: mrr_at_1
value: 18.669
- type: mrr_at_10
value: 27.998
- type: mrr_at_100
value: 28.953
- type: mrr_at_1000
value: 29.03
- type: mrr_at_3
value: 25.230999999999998
- type: mrr_at_5
value: 26.654
- type: ndcg_at_1
value: 18.669
- type: ndcg_at_10
value: 31.684
- type: ndcg_at_100
value: 36.864999999999995
- type: ndcg_at_1000
value: 39.555
- type: ndcg_at_3
value: 26.057000000000002
- type: ndcg_at_5
value: 28.587
- type: precision_at_1
value: 18.669
- type: precision_at_10
value: 5.3420000000000005
- type: precision_at_100
value: 0.847
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 11.583
- type: precision_at_5
value: 8.466
- type: recall_at_1
value: 17.474
- type: recall_at_10
value: 46.497
- type: recall_at_100
value: 69.977
- type: recall_at_1000
value: 89.872
- type: recall_at_3
value: 31.385999999999996
- type: recall_at_5
value: 37.283
task:
type: Retrieval
- dataset:
config: default
name: MTEB ClimateFEVER
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
split: test
type: mteb/climate-fever
metrics:
- type: map_at_1
value: 17.173
- type: map_at_10
value: 30.407
- type: map_at_100
value: 32.528
- type: map_at_1000
value: 32.698
- type: map_at_3
value: 25.523
- type: map_at_5
value: 28.038
- type: mrr_at_1
value: 38.958
- type: mrr_at_10
value: 51.515
- type: mrr_at_100
value: 52.214000000000006
- type: mrr_at_1000
value: 52.237
- type: mrr_at_3
value: 48.502
- type: mrr_at_5
value: 50.251000000000005
- type: ndcg_at_1
value: 38.958
- type: ndcg_at_10
value: 40.355000000000004
- type: ndcg_at_100
value: 47.68
- type: ndcg_at_1000
value: 50.370000000000005
- type: ndcg_at_3
value: 33.946
- type: ndcg_at_5
value: 36.057
- type: precision_at_1
value: 38.958
- type: precision_at_10
value: 12.508
- type: precision_at_100
value: 2.054
- type: precision_at_1000
value: 0.256
- type: precision_at_3
value: 25.581
- type: precision_at_5
value: 19.256999999999998
- type: recall_at_1
value: 17.173
- type: recall_at_10
value: 46.967
- type: recall_at_100
value: 71.47200000000001
- type: recall_at_1000
value: 86.238
- type: recall_at_3
value: 30.961
- type: recall_at_5
value: 37.539
task:
type: Retrieval
- dataset:
config: default
name: MTEB DBPedia
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
split: test
type: mteb/dbpedia
metrics:
- type: map_at_1
value: 8.999
- type: map_at_10
value: 18.989
- type: map_at_100
value: 26.133
- type: map_at_1000
value: 27.666
- type: map_at_3
value: 13.918
- type: map_at_5
value: 16.473
- type: mrr_at_1
value: 66.25
- type: mrr_at_10
value: 74.161
- type: mrr_at_100
value: 74.516
- type: mrr_at_1000
value: 74.524
- type: mrr_at_3
value: 72.875
- type: mrr_at_5
value: 73.613
- type: ndcg_at_1
value: 54.37499999999999
- type: ndcg_at_10
value: 39.902
- type: ndcg_at_100
value: 44.212
- type: ndcg_at_1000
value: 51.62
- type: ndcg_at_3
value: 45.193
- type: ndcg_at_5
value: 42.541000000000004
- type: precision_at_1
value: 66.25
- type: precision_at_10
value: 30.425
- type: precision_at_100
value: 9.754999999999999
- type: precision_at_1000
value: 2.043
- type: precision_at_3
value: 48.25
- type: precision_at_5
value: 40.65
- type: recall_at_1
value: 8.999
- type: recall_at_10
value: 24.133
- type: recall_at_100
value: 49.138999999999996
- type: recall_at_1000
value: 72.639
- type: recall_at_3
value: 15.287999999999998
- type: recall_at_5
value: 19.415
task:
type: Retrieval
- dataset:
config: default
name: MTEB EmotionClassification
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
split: test
type: mteb/emotion
metrics:
- type: accuracy
value: 46.38999999999999
- type: f1
value: 41.444205512055234
task:
type: Classification
- dataset:
config: default
name: MTEB FEVER
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
split: test
type: mteb/fever
metrics:
- type: map_at_1
value: 87.35000000000001
- type: map_at_10
value: 92.837
- type: map_at_100
value: 92.996
- type: map_at_1000
value: 93.006
- type: map_at_3
value: 92.187
- type: map_at_5
value: 92.595
- type: mrr_at_1
value: 93.864
- type: mrr_at_10
value: 96.723
- type: mrr_at_100
value: 96.72500000000001
- type: mrr_at_1000
value: 96.72500000000001
- type: mrr_at_3
value: 96.64
- type: mrr_at_5
value: 96.71499999999999
- type: ndcg_at_1
value: 93.864
- type: ndcg_at_10
value: 94.813
- type: ndcg_at_100
value: 95.243
- type: ndcg_at_1000
value: 95.38600000000001
- type: ndcg_at_3
value: 94.196
- type: ndcg_at_5
value: 94.521
- type: precision_at_1
value: 93.864
- type: precision_at_10
value: 10.951
- type: precision_at_100
value: 1.1400000000000001
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 35.114000000000004
- type: precision_at_5
value: 21.476
- type: recall_at_1
value: 87.35000000000001
- type: recall_at_10
value: 96.941
- type: recall_at_100
value: 98.397
- type: recall_at_1000
value: 99.21600000000001
- type: recall_at_3
value: 95.149
- type: recall_at_5
value: 96.131
task:
type: Retrieval
- dataset:
config: default
name: MTEB FiQA2018
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
split: test
type: mteb/fiqa
metrics:
- type: map_at_1
value: 24.476
- type: map_at_10
value: 40.11
- type: map_at_100
value: 42.229
- type: map_at_1000
value: 42.378
- type: map_at_3
value: 34.512
- type: map_at_5
value: 38.037
- type: mrr_at_1
value: 47.839999999999996
- type: mrr_at_10
value: 57.053
- type: mrr_at_100
value: 57.772
- type: mrr_at_1000
value: 57.799
- type: mrr_at_3
value: 54.552
- type: mrr_at_5
value: 56.011
- type: ndcg_at_1
value: 47.839999999999996
- type: ndcg_at_10
value: 48.650999999999996
- type: ndcg_at_100
value: 55.681000000000004
- type: ndcg_at_1000
value: 57.979
- type: ndcg_at_3
value: 43.923
- type: ndcg_at_5
value: 46.037
- type: precision_at_1
value: 47.839999999999996
- type: precision_at_10
value: 13.395000000000001
- type: precision_at_100
value: 2.0660000000000003
- type: precision_at_1000
value: 0.248
- type: precision_at_3
value: 29.064
- type: precision_at_5
value: 22.006
- type: recall_at_1
value: 24.476
- type: recall_at_10
value: 56.216
- type: recall_at_100
value: 81.798
- type: recall_at_1000
value: 95.48299999999999
- type: recall_at_3
value: 39.357
- type: recall_at_5
value: 47.802
task:
type: Retrieval
- dataset:
config: default
name: MTEB HotpotQA
revision: ab518f4d6fcca38d87c25209f94beba119d02014
split: test
type: mteb/hotpotqa
metrics:
- type: map_at_1
value: 42.728
- type: map_at_10
value: 57.737
- type: map_at_100
value: 58.531
- type: map_at_1000
value: 58.594
- type: map_at_3
value: 54.869
- type: map_at_5
value: 56.55
- type: mrr_at_1
value: 85.456
- type: mrr_at_10
value: 90.062
- type: mrr_at_100
value: 90.159
- type: mrr_at_1000
value: 90.16
- type: mrr_at_3
value: 89.37899999999999
- type: mrr_at_5
value: 89.81
- type: ndcg_at_1
value: 85.456
- type: ndcg_at_10
value: 67.755
- type: ndcg_at_100
value: 70.341
- type: ndcg_at_1000
value: 71.538
- type: ndcg_at_3
value: 63.735
- type: ndcg_at_5
value: 65.823
- type: precision_at_1
value: 85.456
- type: precision_at_10
value: 13.450000000000001
- type: precision_at_100
value: 1.545
- type: precision_at_1000
value: 0.16999999999999998
- type: precision_at_3
value: 38.861000000000004
- type: precision_at_5
value: 24.964
- type: recall_at_1
value: 42.728
- type: recall_at_10
value: 67.252
- type: recall_at_100
value: 77.265
- type: recall_at_1000
value: 85.246
- type: recall_at_3
value: 58.292
- type: recall_at_5
value: 62.41100000000001
task:
type: Retrieval
- dataset:
config: default
name: MTEB ImdbClassification
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
split: test
type: mteb/imdb
metrics:
- type: accuracy
value: 87.4836
- type: ap
value: 82.29552224030336
- type: f1
value: 87.42791432227448
task:
type: Classification
- dataset:
config: default
name: MTEB MSMARCO
revision: c5a29a104738b98a9e76336939199e264163d4a0
split: dev
type: mteb/msmarco
metrics:
- type: map_at_1
value: 23.015
- type: map_at_10
value: 35.621
- type: map_at_100
value: 36.809
- type: map_at_1000
value: 36.853
- type: map_at_3
value: 31.832
- type: map_at_5
value: 34.006
- type: mrr_at_1
value: 23.738999999999997
- type: mrr_at_10
value: 36.309999999999995
- type: mrr_at_100
value: 37.422
- type: mrr_at_1000
value: 37.461
- type: mrr_at_3
value: 32.592999999999996
- type: mrr_at_5
value: 34.736
- type: ndcg_at_1
value: 23.724999999999998
- type: ndcg_at_10
value: 42.617
- type: ndcg_at_100
value: 48.217999999999996
- type: ndcg_at_1000
value: 49.309
- type: ndcg_at_3
value: 34.905
- type: ndcg_at_5
value: 38.769
- type: precision_at_1
value: 23.724999999999998
- type: precision_at_10
value: 6.689
- type: precision_at_100
value: 0.9480000000000001
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.89
- type: precision_at_5
value: 10.897
- type: recall_at_1
value: 23.015
- type: recall_at_10
value: 64.041
- type: recall_at_100
value: 89.724
- type: recall_at_1000
value: 98.00999999999999
- type: recall_at_3
value: 43.064
- type: recall_at_5
value: 52.31099999999999
task:
type: Retrieval
- dataset:
config: en
name: MTEB MTOPDomainClassification (en)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 96.49794801641588
- type: f1
value: 96.28931114498003
task:
type: Classification
- dataset:
config: en
name: MTEB MTOPIntentClassification (en)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 82.81121751025992
- type: f1
value: 63.18740125901853
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveIntentClassification (en)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 77.66644250168123
- type: f1
value: 74.93211186867839
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveScenarioClassification (en)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 81.77202420981843
- type: f1
value: 81.63681969283554
task:
type: Classification
- dataset:
config: default
name: MTEB MedrxivClusteringP2P
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
split: test
type: mteb/medrxiv-clustering-p2p
metrics:
- type: v_measure
value: 34.596687684870645
task:
type: Clustering
- dataset:
config: default
name: MTEB MedrxivClusteringS2S
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
split: test
type: mteb/medrxiv-clustering-s2s
metrics:
- type: v_measure
value: 32.26965660101405
task:
type: Clustering
- dataset:
config: default
name: MTEB MindSmallReranking
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
split: test
type: mteb/mind_small
metrics:
- type: map
value: 31.33619694846802
- type: mrr
value: 32.53719657720334
task:
type: Reranking
- dataset:
config: default
name: MTEB NFCorpus
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
split: test
type: mteb/nfcorpus
metrics:
- type: map_at_1
value: 6.0729999999999995
- type: map_at_10
value: 13.245999999999999
- type: map_at_100
value: 16.747999999999998
- type: map_at_1000
value: 18.163
- type: map_at_3
value: 10.064
- type: map_at_5
value: 11.513
- type: mrr_at_1
value: 49.536
- type: mrr_at_10
value: 58.092
- type: mrr_at_100
value: 58.752
- type: mrr_at_1000
value: 58.78
- type: mrr_at_3
value: 56.398
- type: mrr_at_5
value: 57.389
- type: ndcg_at_1
value: 47.059
- type: ndcg_at_10
value: 35.881
- type: ndcg_at_100
value: 32.751999999999995
- type: ndcg_at_1000
value: 41.498000000000005
- type: ndcg_at_3
value: 42.518
- type: ndcg_at_5
value: 39.550999999999995
- type: precision_at_1
value: 49.536
- type: precision_at_10
value: 26.316
- type: precision_at_100
value: 8.084
- type: precision_at_1000
value: 2.081
- type: precision_at_3
value: 39.938
- type: precision_at_5
value: 34.056
- type: recall_at_1
value: 6.0729999999999995
- type: recall_at_10
value: 16.593
- type: recall_at_100
value: 32.883
- type: recall_at_1000
value: 64.654
- type: recall_at_3
value: 11.174000000000001
- type: recall_at_5
value: 13.528
task:
type: Retrieval
- dataset:
config: default
name: MTEB NQ
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
split: test
type: mteb/nq
metrics:
- type: map_at_1
value: 30.043
- type: map_at_10
value: 45.318999999999996
- type: map_at_100
value: 46.381
- type: map_at_1000
value: 46.412
- type: map_at_3
value: 40.941
- type: map_at_5
value: 43.662
- type: mrr_at_1
value: 33.98
- type: mrr_at_10
value: 47.870000000000005
- type: mrr_at_100
value: 48.681999999999995
- type: mrr_at_1000
value: 48.703
- type: mrr_at_3
value: 44.341
- type: mrr_at_5
value: 46.547
- type: ndcg_at_1
value: 33.98
- type: ndcg_at_10
value: 52.957
- type: ndcg_at_100
value: 57.434
- type: ndcg_at_1000
value: 58.103
- type: ndcg_at_3
value: 44.896
- type: ndcg_at_5
value: 49.353
- type: precision_at_1
value: 33.98
- type: precision_at_10
value: 8.786
- type: precision_at_100
value: 1.1280000000000001
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_3
value: 20.577
- type: precision_at_5
value: 14.942
- type: recall_at_1
value: 30.043
- type: recall_at_10
value: 73.593
- type: recall_at_100
value: 93.026
- type: recall_at_1000
value: 97.943
- type: recall_at_3
value: 52.955
- type: recall_at_5
value: 63.132
task:
type: Retrieval
- dataset:
config: default
name: MTEB QuoraRetrieval
revision: None
split: test
type: mteb/quora
metrics:
- type: map_at_1
value: 70.808
- type: map_at_10
value: 84.675
- type: map_at_100
value: 85.322
- type: map_at_1000
value: 85.33800000000001
- type: map_at_3
value: 81.68900000000001
- type: map_at_5
value: 83.543
- type: mrr_at_1
value: 81.5
- type: mrr_at_10
value: 87.59700000000001
- type: mrr_at_100
value: 87.705
- type: mrr_at_1000
value: 87.70599999999999
- type: mrr_at_3
value: 86.607
- type: mrr_at_5
value: 87.289
- type: ndcg_at_1
value: 81.51
- type: ndcg_at_10
value: 88.41799999999999
- type: ndcg_at_100
value: 89.644
- type: ndcg_at_1000
value: 89.725
- type: ndcg_at_3
value: 85.49900000000001
- type: ndcg_at_5
value: 87.078
- type: precision_at_1
value: 81.51
- type: precision_at_10
value: 13.438
- type: precision_at_100
value: 1.532
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.363
- type: precision_at_5
value: 24.57
- type: recall_at_1
value: 70.808
- type: recall_at_10
value: 95.575
- type: recall_at_100
value: 99.667
- type: recall_at_1000
value: 99.98899999999999
- type: recall_at_3
value: 87.223
- type: recall_at_5
value: 91.682
task:
type: Retrieval
- dataset:
config: default
name: MTEB RedditClustering
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
split: test
type: mteb/reddit-clustering
metrics:
- type: v_measure
value: 58.614831329137715
task:
type: Clustering
- dataset:
config: default
name: MTEB RedditClusteringP2P
revision: 282350215ef01743dc01b456c7f5241fa8937f16
split: test
type: mteb/reddit-clustering-p2p
metrics:
- type: v_measure
value: 66.86580408560826
task:
type: Clustering
- dataset:
config: default
name: MTEB SCIDOCS
revision: None
split: test
type: mteb/scidocs
metrics:
- type: map_at_1
value: 5.093
- type: map_at_10
value: 13.014000000000001
- type: map_at_100
value: 15.412999999999998
- type: map_at_1000
value: 15.756999999999998
- type: map_at_3
value: 9.216000000000001
- type: map_at_5
value: 11.036999999999999
- type: mrr_at_1
value: 25.1
- type: mrr_at_10
value: 37.133
- type: mrr_at_100
value: 38.165
- type: mrr_at_1000
value: 38.198
- type: mrr_at_3
value: 33.217
- type: mrr_at_5
value: 35.732
- type: ndcg_at_1
value: 25.1
- type: ndcg_at_10
value: 21.918000000000003
- type: ndcg_at_100
value: 30.983
- type: ndcg_at_1000
value: 36.629
- type: ndcg_at_3
value: 20.544999999999998
- type: ndcg_at_5
value: 18.192
- type: precision_at_1
value: 25.1
- type: precision_at_10
value: 11.44
- type: precision_at_100
value: 2.459
- type: precision_at_1000
value: 0.381
- type: precision_at_3
value: 19.267
- type: precision_at_5
value: 16.16
- type: recall_at_1
value: 5.093
- type: recall_at_10
value: 23.215
- type: recall_at_100
value: 49.902
- type: recall_at_1000
value: 77.403
- type: recall_at_3
value: 11.733
- type: recall_at_5
value: 16.372999999999998
task:
type: Retrieval
- dataset:
config: default
name: MTEB SICK-R
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
split: test
type: mteb/sickr-sts
metrics:
- type: cos_sim_pearson
value: 82.9365442977452
- type: cos_sim_spearman
value: 79.36960687383745
- type: euclidean_pearson
value: 79.6045204840714
- type: euclidean_spearman
value: 79.26382712751337
- type: manhattan_pearson
value: 79.4805084789529
- type: manhattan_spearman
value: 79.21847863209523
task:
type: STS
- dataset:
config: default
name: MTEB STS12
revision: a0d554a64d88156834ff5ae9920b964011b16384
split: test
type: mteb/sts12-sts
metrics:
- type: cos_sim_pearson
value: 83.27906192961453
- type: cos_sim_spearman
value: 74.38364712099211
- type: euclidean_pearson
value: 78.54358927241223
- type: euclidean_spearman
value: 74.22185560806376
- type: manhattan_pearson
value: 78.50904327377751
- type: manhattan_spearman
value: 74.2627500781748
task:
type: STS
- dataset:
config: default
name: MTEB STS13
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
split: test
type: mteb/sts13-sts
metrics:
- type: cos_sim_pearson
value: 84.66863742649639
- type: cos_sim_spearman
value: 84.70630905216271
- type: euclidean_pearson
value: 84.64498334705334
- type: euclidean_spearman
value: 84.87204770690148
- type: manhattan_pearson
value: 84.65774227976077
- type: manhattan_spearman
value: 84.91251851797985
task:
type: STS
- dataset:
config: default
name: MTEB STS14
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
split: test
type: mteb/sts14-sts
metrics:
- type: cos_sim_pearson
value: 83.1577763924467
- type: cos_sim_spearman
value: 80.10314039230198
- type: euclidean_pearson
value: 81.51346991046043
- type: euclidean_spearman
value: 80.08678485109435
- type: manhattan_pearson
value: 81.57058914661894
- type: manhattan_spearman
value: 80.1516230725106
task:
type: STS
- dataset:
config: default
name: MTEB STS15
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
split: test
type: mteb/sts15-sts
metrics:
- type: cos_sim_pearson
value: 86.40310839662533
- type: cos_sim_spearman
value: 87.16293477217867
- type: euclidean_pearson
value: 86.50688711184775
- type: euclidean_spearman
value: 87.08651444923031
- type: manhattan_pearson
value: 86.54674677557857
- type: manhattan_spearman
value: 87.15079017870971
task:
type: STS
- dataset:
config: default
name: MTEB STS16
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
split: test
type: mteb/sts16-sts
metrics:
- type: cos_sim_pearson
value: 84.32886275207817
- type: cos_sim_spearman
value: 85.0190460590732
- type: euclidean_pearson
value: 84.42553652784679
- type: euclidean_spearman
value: 85.20027364279328
- type: manhattan_pearson
value: 84.42926246281078
- type: manhattan_spearman
value: 85.20187419804306
task:
type: STS
- dataset:
config: en-en
name: MTEB STS17 (en-en)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 90.76732216967812
- type: cos_sim_spearman
value: 90.63701653633909
- type: euclidean_pearson
value: 90.26678186114682
- type: euclidean_spearman
value: 90.67288073455427
- type: manhattan_pearson
value: 90.20772020584582
- type: manhattan_spearman
value: 90.60764863983702
task:
type: STS
- dataset:
config: en
name: MTEB STS22 (en)
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 69.09280387698125
- type: cos_sim_spearman
value: 68.62743151172162
- type: euclidean_pearson
value: 69.89386398104689
- type: euclidean_spearman
value: 68.71191066733556
- type: manhattan_pearson
value: 69.92516500604872
- type: manhattan_spearman
value: 68.80452846992576
task:
type: STS
- dataset:
config: default
name: MTEB STSBenchmark
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
split: test
type: mteb/stsbenchmark-sts
metrics:
- type: cos_sim_pearson
value: 86.13178592019887
- type: cos_sim_spearman
value: 86.03947178806887
- type: euclidean_pearson
value: 85.87029414285313
- type: euclidean_spearman
value: 86.04960843306998
- type: manhattan_pearson
value: 85.92946858580146
- type: manhattan_spearman
value: 86.12575341860442
task:
type: STS
- dataset:
config: default
name: MTEB SciDocsRR
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
split: test
type: mteb/scidocs-reranking
metrics:
- type: map
value: 85.16657063002837
- type: mrr
value: 95.73671063867141
task:
type: Reranking
- dataset:
config: default
name: MTEB SciFact
revision: 0228b52cf27578f30900b9e5271d331663a030d7
split: test
type: mteb/scifact
metrics:
- type: map_at_1
value: 63.510999999999996
- type: map_at_10
value: 72.76899999999999
- type: map_at_100
value: 73.303
- type: map_at_1000
value: 73.32499999999999
- type: map_at_3
value: 70.514
- type: map_at_5
value: 71.929
- type: mrr_at_1
value: 66.333
- type: mrr_at_10
value: 73.75
- type: mrr_at_100
value: 74.119
- type: mrr_at_1000
value: 74.138
- type: mrr_at_3
value: 72.222
- type: mrr_at_5
value: 73.122
- type: ndcg_at_1
value: 66.333
- type: ndcg_at_10
value: 76.774
- type: ndcg_at_100
value: 78.78500000000001
- type: ndcg_at_1000
value: 79.254
- type: ndcg_at_3
value: 73.088
- type: ndcg_at_5
value: 75.002
- type: precision_at_1
value: 66.333
- type: precision_at_10
value: 9.833
- type: precision_at_100
value: 1.093
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 28.222
- type: precision_at_5
value: 18.333
- type: recall_at_1
value: 63.510999999999996
- type: recall_at_10
value: 87.98899999999999
- type: recall_at_100
value: 96.5
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 77.86699999999999
- type: recall_at_5
value: 82.73899999999999
task:
type: Retrieval
- dataset:
config: default
name: MTEB SprintDuplicateQuestions
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
split: test
type: mteb/sprintduplicatequestions-pairclassification
metrics:
- type: cos_sim_accuracy
value: 99.78514851485149
- type: cos_sim_ap
value: 94.94214383862038
- type: cos_sim_f1
value: 89.02255639097744
- type: cos_sim_precision
value: 89.2462311557789
- type: cos_sim_recall
value: 88.8
- type: dot_accuracy
value: 99.78217821782178
- type: dot_ap
value: 94.69965247836805
- type: dot_f1
value: 88.78695208970439
- type: dot_precision
value: 90.54054054054053
- type: dot_recall
value: 87.1
- type: euclidean_accuracy
value: 99.78118811881188
- type: euclidean_ap
value: 94.9865187695411
- type: euclidean_f1
value: 88.99950223992036
- type: euclidean_precision
value: 88.60257680872151
- type: euclidean_recall
value: 89.4
- type: manhattan_accuracy
value: 99.78811881188119
- type: manhattan_ap
value: 95.0021236766459
- type: manhattan_f1
value: 89.12071535022356
- type: manhattan_precision
value: 88.54886475814413
- type: manhattan_recall
value: 89.7
- type: max_accuracy
value: 99.78811881188119
- type: max_ap
value: 95.0021236766459
- type: max_f1
value: 89.12071535022356
task:
type: PairClassification
- dataset:
config: default
name: MTEB StackExchangeClustering
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
split: test
type: mteb/stackexchange-clustering
metrics:
- type: v_measure
value: 68.93190546593995
task:
type: Clustering
- dataset:
config: default
name: MTEB StackExchangeClusteringP2P
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
split: test
type: mteb/stackexchange-clustering-p2p
metrics:
- type: v_measure
value: 37.602808534760655
task:
type: Clustering
- dataset:
config: default
name: MTEB StackOverflowDupQuestions
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
split: test
type: mteb/stackoverflowdupquestions-reranking
metrics:
- type: map
value: 52.29214480978073
- type: mrr
value: 53.123169722434426
task:
type: Reranking
- dataset:
config: default
name: MTEB SummEval
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
split: test
type: mteb/summeval
metrics:
- type: cos_sim_pearson
value: 30.967800769650022
- type: cos_sim_spearman
value: 31.168490040206926
- type: dot_pearson
value: 30.888603021128553
- type: dot_spearman
value: 31.028241262520385
task:
type: Summarization
- dataset:
config: default
name: MTEB TRECCOVID
revision: None
split: test
type: mteb/trec-covid
metrics:
- type: map_at_1
value: 0.22300000000000003
- type: map_at_10
value: 1.781
- type: map_at_100
value: 9.905999999999999
- type: map_at_1000
value: 23.455000000000002
- type: map_at_3
value: 0.569
- type: map_at_5
value: 0.918
- type: mrr_at_1
value: 84
- type: mrr_at_10
value: 91.067
- type: mrr_at_100
value: 91.067
- type: mrr_at_1000
value: 91.067
- type: mrr_at_3
value: 90.667
- type: mrr_at_5
value: 91.067
- type: ndcg_at_1
value: 78
- type: ndcg_at_10
value: 73.13499999999999
- type: ndcg_at_100
value: 55.32
- type: ndcg_at_1000
value: 49.532
- type: ndcg_at_3
value: 73.715
- type: ndcg_at_5
value: 72.74199999999999
- type: precision_at_1
value: 84
- type: precision_at_10
value: 78.8
- type: precision_at_100
value: 56.32
- type: precision_at_1000
value: 21.504
- type: precision_at_3
value: 77.333
- type: precision_at_5
value: 78
- type: recall_at_1
value: 0.22300000000000003
- type: recall_at_10
value: 2.049
- type: recall_at_100
value: 13.553
- type: recall_at_1000
value: 46.367999999999995
- type: recall_at_3
value: 0.604
- type: recall_at_5
value: 1.015
task:
type: Retrieval
- dataset:
config: default
name: MTEB Touche2020
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
split: test
type: mteb/touche2020
metrics:
- type: map_at_1
value: 3.0380000000000003
- type: map_at_10
value: 10.188
- type: map_at_100
value: 16.395
- type: map_at_1000
value: 18.024
- type: map_at_3
value: 6.236
- type: map_at_5
value: 7.276000000000001
- type: mrr_at_1
value: 34.694
- type: mrr_at_10
value: 46.292
- type: mrr_at_100
value: 47.446
- type: mrr_at_1000
value: 47.446
- type: mrr_at_3
value: 41.156
- type: mrr_at_5
value: 44.32
- type: ndcg_at_1
value: 32.653
- type: ndcg_at_10
value: 25.219
- type: ndcg_at_100
value: 37.802
- type: ndcg_at_1000
value: 49.274
- type: ndcg_at_3
value: 28.605999999999998
- type: ndcg_at_5
value: 26.21
- type: precision_at_1
value: 34.694
- type: precision_at_10
value: 21.837
- type: precision_at_100
value: 7.776
- type: precision_at_1000
value: 1.522
- type: precision_at_3
value: 28.571
- type: precision_at_5
value: 25.306
- type: recall_at_1
value: 3.0380000000000003
- type: recall_at_10
value: 16.298000000000002
- type: recall_at_100
value: 48.712
- type: recall_at_1000
value: 83.16799999999999
- type: recall_at_3
value: 7.265000000000001
- type: recall_at_5
value: 9.551
task:
type: Retrieval
- dataset:
config: default
name: MTEB ToxicConversationsClassification
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
split: test
type: mteb/toxic_conversations_50k
metrics:
- type: accuracy
value: 83.978
- type: ap
value: 24.751887949330015
- type: f1
value: 66.8685134049279
task:
type: Classification
- dataset:
config: default
name: MTEB TweetSentimentExtractionClassification
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
split: test
type: mteb/tweet_sentiment_extraction
metrics:
- type: accuracy
value: 61.573288058856825
- type: f1
value: 61.973261751726604
task:
type: Classification
- dataset:
config: default
name: MTEB TwentyNewsgroupsClustering
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
split: test
type: mteb/twentynewsgroups-clustering
metrics:
- type: v_measure
value: 48.75483298792469
task:
type: Clustering
- dataset:
config: default
name: MTEB TwitterSemEval2015
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
split: test
type: mteb/twittersemeval2015-pairclassification
metrics:
- type: cos_sim_accuracy
value: 86.36824223639506
- type: cos_sim_ap
value: 75.53126388573047
- type: cos_sim_f1
value: 67.9912831688245
- type: cos_sim_precision
value: 66.11817501869858
- type: cos_sim_recall
value: 69.9736147757256
- type: dot_accuracy
value: 86.39804494248078
- type: dot_ap
value: 75.27598891718046
- type: dot_f1
value: 67.91146284159763
- type: dot_precision
value: 63.90505003490807
- type: dot_recall
value: 72.45382585751979
- type: euclidean_accuracy
value: 86.36228169517793
- type: euclidean_ap
value: 75.51438087434647
- type: euclidean_f1
value: 68.02370523061066
- type: euclidean_precision
value: 66.46525679758308
- type: euclidean_recall
value: 69.65699208443272
- type: manhattan_accuracy
value: 86.46361089586935
- type: manhattan_ap
value: 75.50800785730111
- type: manhattan_f1
value: 67.9220437187253
- type: manhattan_precision
value: 67.79705573080967
- type: manhattan_recall
value: 68.04749340369392
- type: max_accuracy
value: 86.46361089586935
- type: max_ap
value: 75.53126388573047
- type: max_f1
value: 68.02370523061066
task:
type: PairClassification
- dataset:
config: default
name: MTEB TwitterURLCorpus
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
split: test
type: mteb/twitterurlcorpus-pairclassification
metrics:
- type: cos_sim_accuracy
value: 88.80350836341057
- type: cos_sim_ap
value: 85.51101933260743
- type: cos_sim_f1
value: 77.9152271629704
- type: cos_sim_precision
value: 75.27815662910056
- type: cos_sim_recall
value: 80.74376347397599
- type: dot_accuracy
value: 88.84425815966158
- type: dot_ap
value: 85.49726945962519
- type: dot_f1
value: 77.94445269567801
- type: dot_precision
value: 75.27251864601261
- type: dot_recall
value: 80.81305820757623
- type: euclidean_accuracy
value: 88.80350836341057
- type: euclidean_ap
value: 85.4882880790211
- type: euclidean_f1
value: 77.87063284615103
- type: euclidean_precision
value: 74.61022927689595
- type: euclidean_recall
value: 81.42901139513397
- type: manhattan_accuracy
value: 88.7161873714441
- type: manhattan_ap
value: 85.45753871906821
- type: manhattan_f1
value: 77.8686401480111
- type: manhattan_precision
value: 74.95903683123174
- type: manhattan_recall
value: 81.01324299353249
- type: max_accuracy
value: 88.84425815966158
- type: max_ap
value: 85.51101933260743
- type: max_f1
value: 77.94445269567801
task:
type: PairClassification
tags:
- gte
- mteb
- sentence-similarity
- onnx
- teradata
See Disclaimer below
A Teradata Vantage compatible Embeddings Model
Alibaba-NLP/gte-base-en-v1.5
Overview of this Model
An Embedding Model which maps text (sentence/ paragraphs) into a vector. The Alibaba-NLP/gte-base-en-v1.5 model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings.
- 136.78M params (Sizes in ONNX format - "fp32": 530.23MB, "int8": 139.38MB, "uint8": 139.38MB)
- 8192 maximum input tokens
- 768 dimensions of output vector
- Licence: apache-2.0. The released models can be used for commercial purposes free of charge.
- Reference to Original Model: https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5
Quickstart: Deploying this Model in Teradata Vantage
We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion.
Note: Ensure you have access to a Teradata Database with BYOM 6.0 installed.
To get started, clone the pre-converted model directly from the Teradata HuggingFace repository.
import teradataml as tdml
import getpass
from huggingface_hub import hf_hub_download
model_name = "gte-base-en-v1.5"
number_dimensions_output = 768
model_file_name = "model.onnx"
# Step 1: Download Model from Teradata HuggingFace Page
hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./")
hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./")
# Step 2: Create Connection to Vantage
tdml.create_context(host = input('enter your hostname'),
username=input('enter your username'),
password = getpass.getpass("enter your password"))
# Step 3: Load Models into Vantage
# a) Embedding model
tdml.save_byom(model_id = model_name, # must be unique in the models table
model_file = f"onnx/{model_file_name}",
table_name = 'embeddings_models' )
# b) Tokenizer
tdml.save_byom(model_id = model_name, # must be unique in the models table
model_file = 'tokenizer.json',
table_name = 'embeddings_tokenizers')
# Step 4: Test ONNXEmbeddings Function
# Note that ONNXEmbeddings expects the 'payload' column to be 'txt'.
# If it has got a different name, just rename it in a subquery/CTE.
input_table = "emails.emails"
embeddings_query = f"""
SELECT
*
from mldb.ONNXEmbeddings(
on {input_table} as InputTable
on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION
on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION
using
Accumulate('id', 'txt')
ModelOutputTensor('sentence_embedding')
EnableMemoryCheck('false')
OutputFormat('FLOAT32({number_dimensions_output})')
OverwriteCachedModel('true')
) a
"""
DF_embeddings = tdml.DataFrame.from_query(embeddings_query)
DF_embeddings
What Can I Do with the Embeddings?
Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples:
- Semantic Clustering with TD_KMeans: Semantic Clustering Python Notebook
- Semantic Distance with TD_VectorDistance: Semantic Similarity Python Notebook
- RAG-Based Application with TD_VectorDistance: RAG and Bedrock Query PDF Notebook
Deep Dive into Model Conversion to ONNX
The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.
You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format.
Part 1. Importing and Converting Model using optimum
We start by importing the pre-trained Alibaba-NLP/gte-base-en-v1.5 model from Hugging Face.
To enhance performance and ensure compatibility with various execution environments, we'll use the Optimum utility to convert the model into the ONNX (Open Neural Network Exchange) format.
After conversion to ONNX, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage
We are generating ONNX files for multiple different precisions: fp32, int8, uint8
You can find the detailed conversion steps in the file convert.py
Part 2. Running the model in Python with onnxruntime & compare results
Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results.
If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database.
import onnxruntime as rt
from sentence_transformers.util import cos_sim
from sentence_transformers import SentenceTransformer
import transformers
sentences_1 = 'How is the weather today?'
sentences_2 = 'What is the current weather like today?'
# Calculate ONNX result
tokenizer = transformers.AutoTokenizer.from_pretrained("Alibaba-NLP/gte-base-en-v1.5")
predef_sess = rt.InferenceSession("onnx/model.onnx")
enc1 = tokenizer(sentences_1)
embeddings_1_onnx = predef_sess.run(None, {"input_ids": [enc1.input_ids],
"attention_mask": [enc1.attention_mask]})
enc2 = tokenizer(sentences_2)
embeddings_2_onnx = predef_sess.run(None, {"input_ids": [enc2.input_ids],
"attention_mask": [enc2.attention_mask]})
# Calculate embeddings with SentenceTransformer
model = SentenceTransformer(model_id, trust_remote_code=True)
embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True)
embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True)
# Compare results
print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0])))
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file test_local.py
DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata.
To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations.
While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws.
You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.