martinhillebrandtd's picture
Update README.md
6d0f11f verified
metadata
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
license: mit
model-index:
  - name: multilingual-e5-base
    results:
      - dataset:
          config: en
          name: MTEB AmazonCounterfactualClassification (en)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 78.97014925373135
          - type: ap
            value: 43.69351129103008
          - type: f1
            value: 73.38075030070492
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB AmazonCounterfactualClassification (de)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 71.7237687366167
          - type: ap
            value: 82.22089859962671
          - type: f1
            value: 69.95532758884401
        task:
          type: Classification
      - dataset:
          config: en-ext
          name: MTEB AmazonCounterfactualClassification (en-ext)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 79.65517241379312
          - type: ap
            value: 28.507918657094738
          - type: f1
            value: 66.84516013726119
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB AmazonCounterfactualClassification (ja)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 73.32976445396146
          - type: ap
            value: 20.720481637566014
          - type: f1
            value: 59.78002763416003
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB AmazonPolarityClassification
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
          split: test
          type: mteb/amazon_polarity
        metrics:
          - type: accuracy
            value: 90.63775
          - type: ap
            value: 87.22277903861716
          - type: f1
            value: 90.60378636386807
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB AmazonReviewsClassification (en)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 44.546
          - type: f1
            value: 44.05666638370923
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB AmazonReviewsClassification (de)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 41.828
          - type: f1
            value: 41.2710255644252
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB AmazonReviewsClassification (es)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 40.534
          - type: f1
            value: 39.820743174270326
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB AmazonReviewsClassification (fr)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 39.684
          - type: f1
            value: 39.11052682815307
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB AmazonReviewsClassification (ja)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 37.436
          - type: f1
            value: 37.07082931930871
        task:
          type: Classification
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 37.226000000000006
          - type: f1
            value: 36.65372077739185
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ArguAna
          revision: None
          split: test
          type: arguana
        metrics:
          - type: map_at_1
            value: 22.831000000000003
          - type: map_at_10
            value: 36.42
          - type: map_at_100
            value: 37.699
          - type: map_at_1000
            value: 37.724000000000004
          - type: map_at_3
            value: 32.207
          - type: map_at_5
            value: 34.312
          - type: mrr_at_1
            value: 23.257
          - type: mrr_at_10
            value: 36.574
          - type: mrr_at_100
            value: 37.854
          - type: mrr_at_1000
            value: 37.878
          - type: mrr_at_3
            value: 32.385000000000005
          - type: mrr_at_5
            value: 34.48
          - type: ndcg_at_1
            value: 22.831000000000003
          - type: ndcg_at_10
            value: 44.230000000000004
          - type: ndcg_at_100
            value: 49.974000000000004
          - type: ndcg_at_1000
            value: 50.522999999999996
          - type: ndcg_at_3
            value: 35.363
          - type: ndcg_at_5
            value: 39.164
          - type: precision_at_1
            value: 22.831000000000003
          - type: precision_at_10
            value: 6.935
          - type: precision_at_100
            value: 0.9520000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 14.841
          - type: precision_at_5
            value: 10.754
          - type: recall_at_1
            value: 22.831000000000003
          - type: recall_at_10
            value: 69.346
          - type: recall_at_100
            value: 95.235
          - type: recall_at_1000
            value: 99.36
          - type: recall_at_3
            value: 44.523
          - type: recall_at_5
            value: 53.769999999999996
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ArxivClusteringP2P
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
          split: test
          type: mteb/arxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 40.27789869854063
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ArxivClusteringS2S
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
          split: test
          type: mteb/arxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 35.41979463347428
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AskUbuntuDupQuestions
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
          split: test
          type: mteb/askubuntudupquestions-reranking
        metrics:
          - type: map
            value: 58.22752045109304
          - type: mrr
            value: 71.51112430198303
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB BIOSSES
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
          split: test
          type: mteb/biosses-sts
        metrics:
          - type: cos_sim_pearson
            value: 84.71147646622866
          - type: cos_sim_spearman
            value: 85.059167046486
          - type: euclidean_pearson
            value: 75.88421613600647
          - type: euclidean_spearman
            value: 75.12821787150585
          - type: manhattan_pearson
            value: 75.22005646957604
          - type: manhattan_spearman
            value: 74.42880434453272
        task:
          type: STS
      - dataset:
          config: de-en
          name: MTEB BUCC (de-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: accuracy
            value: 99.23799582463465
          - type: f1
            value: 99.12665274878218
          - type: precision
            value: 99.07098121085595
          - type: recall
            value: 99.23799582463465
        task:
          type: BitextMining
      - dataset:
          config: fr-en
          name: MTEB BUCC (fr-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: accuracy
            value: 97.88685890380806
          - type: f1
            value: 97.59336708489249
          - type: precision
            value: 97.44662117543473
          - type: recall
            value: 97.88685890380806
        task:
          type: BitextMining
      - dataset:
          config: ru-en
          name: MTEB BUCC (ru-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: accuracy
            value: 97.47142362313821
          - type: f1
            value: 97.1989377670015
          - type: precision
            value: 97.06384944001847
          - type: recall
            value: 97.47142362313821
        task:
          type: BitextMining
      - dataset:
          config: zh-en
          name: MTEB BUCC (zh-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: accuracy
            value: 98.4728804634018
          - type: f1
            value: 98.2973494821836
          - type: precision
            value: 98.2095839915745
          - type: recall
            value: 98.4728804634018
        task:
          type: BitextMining
      - dataset:
          config: default
          name: MTEB Banking77Classification
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
          split: test
          type: mteb/banking77
        metrics:
          - type: accuracy
            value: 82.74025974025975
          - type: f1
            value: 82.67420447730439
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BiorxivClusteringP2P
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
          split: test
          type: mteb/biorxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 35.0380848063507
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB BiorxivClusteringS2S
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
          split: test
          type: mteb/biorxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 29.45956405670166
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CQADupstackAndroidRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 32.122
          - type: map_at_10
            value: 42.03
          - type: map_at_100
            value: 43.364000000000004
          - type: map_at_1000
            value: 43.474000000000004
          - type: map_at_3
            value: 38.804
          - type: map_at_5
            value: 40.585
          - type: mrr_at_1
            value: 39.914
          - type: mrr_at_10
            value: 48.227
          - type: mrr_at_100
            value: 49.018
          - type: mrr_at_1000
            value: 49.064
          - type: mrr_at_3
            value: 45.994
          - type: mrr_at_5
            value: 47.396
          - type: ndcg_at_1
            value: 39.914
          - type: ndcg_at_10
            value: 47.825
          - type: ndcg_at_100
            value: 52.852
          - type: ndcg_at_1000
            value: 54.891
          - type: ndcg_at_3
            value: 43.517
          - type: ndcg_at_5
            value: 45.493
          - type: precision_at_1
            value: 39.914
          - type: precision_at_10
            value: 8.956
          - type: precision_at_100
            value: 1.388
          - type: precision_at_1000
            value: 0.182
          - type: precision_at_3
            value: 20.791999999999998
          - type: precision_at_5
            value: 14.821000000000002
          - type: recall_at_1
            value: 32.122
          - type: recall_at_10
            value: 58.294999999999995
          - type: recall_at_100
            value: 79.726
          - type: recall_at_1000
            value: 93.099
          - type: recall_at_3
            value: 45.017
          - type: recall_at_5
            value: 51.002
          - type: map_at_1
            value: 29.677999999999997
          - type: map_at_10
            value: 38.684000000000005
          - type: map_at_100
            value: 39.812999999999995
          - type: map_at_1000
            value: 39.945
          - type: map_at_3
            value: 35.831
          - type: map_at_5
            value: 37.446
          - type: mrr_at_1
            value: 37.771
          - type: mrr_at_10
            value: 44.936
          - type: mrr_at_100
            value: 45.583
          - type: mrr_at_1000
            value: 45.634
          - type: mrr_at_3
            value: 42.771
          - type: mrr_at_5
            value: 43.994
          - type: ndcg_at_1
            value: 37.771
          - type: ndcg_at_10
            value: 44.059
          - type: ndcg_at_100
            value: 48.192
          - type: ndcg_at_1000
            value: 50.375
          - type: ndcg_at_3
            value: 40.172000000000004
          - type: ndcg_at_5
            value: 41.899
          - type: precision_at_1
            value: 37.771
          - type: precision_at_10
            value: 8.286999999999999
          - type: precision_at_100
            value: 1.322
          - type: precision_at_1000
            value: 0.178
          - type: precision_at_3
            value: 19.406000000000002
          - type: precision_at_5
            value: 13.745
          - type: recall_at_1
            value: 29.677999999999997
          - type: recall_at_10
            value: 53.071
          - type: recall_at_100
            value: 70.812
          - type: recall_at_1000
            value: 84.841
          - type: recall_at_3
            value: 41.016000000000005
          - type: recall_at_5
            value: 46.22
          - type: map_at_1
            value: 42.675000000000004
          - type: map_at_10
            value: 53.93599999999999
          - type: map_at_100
            value: 54.806999999999995
          - type: map_at_1000
            value: 54.867
          - type: map_at_3
            value: 50.934000000000005
          - type: map_at_5
            value: 52.583
          - type: mrr_at_1
            value: 48.339
          - type: mrr_at_10
            value: 57.265
          - type: mrr_at_100
            value: 57.873
          - type: mrr_at_1000
            value: 57.906
          - type: mrr_at_3
            value: 55.193000000000005
          - type: mrr_at_5
            value: 56.303000000000004
          - type: ndcg_at_1
            value: 48.339
          - type: ndcg_at_10
            value: 59.19799999999999
          - type: ndcg_at_100
            value: 62.743
          - type: ndcg_at_1000
            value: 63.99399999999999
          - type: ndcg_at_3
            value: 54.367
          - type: ndcg_at_5
            value: 56.548
          - type: precision_at_1
            value: 48.339
          - type: precision_at_10
            value: 9.216000000000001
          - type: precision_at_100
            value: 1.1809999999999998
          - type: precision_at_1000
            value: 0.134
          - type: precision_at_3
            value: 23.72
          - type: precision_at_5
            value: 16.025
          - type: recall_at_1
            value: 42.675000000000004
          - type: recall_at_10
            value: 71.437
          - type: recall_at_100
            value: 86.803
          - type: recall_at_1000
            value: 95.581
          - type: recall_at_3
            value: 58.434
          - type: recall_at_5
            value: 63.754
          - type: map_at_1
            value: 23.518
          - type: map_at_10
            value: 30.648999999999997
          - type: map_at_100
            value: 31.508999999999997
          - type: map_at_1000
            value: 31.604
          - type: map_at_3
            value: 28.247
          - type: map_at_5
            value: 29.65
          - type: mrr_at_1
            value: 25.650000000000002
          - type: mrr_at_10
            value: 32.771
          - type: mrr_at_100
            value: 33.554
          - type: mrr_at_1000
            value: 33.629999999999995
          - type: mrr_at_3
            value: 30.433
          - type: mrr_at_5
            value: 31.812
          - type: ndcg_at_1
            value: 25.650000000000002
          - type: ndcg_at_10
            value: 34.929
          - type: ndcg_at_100
            value: 39.382
          - type: ndcg_at_1000
            value: 41.913
          - type: ndcg_at_3
            value: 30.292
          - type: ndcg_at_5
            value: 32.629999999999995
          - type: precision_at_1
            value: 25.650000000000002
          - type: precision_at_10
            value: 5.311
          - type: precision_at_100
            value: 0.792
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 12.58
          - type: precision_at_5
            value: 8.994
          - type: recall_at_1
            value: 23.518
          - type: recall_at_10
            value: 46.19
          - type: recall_at_100
            value: 67.123
          - type: recall_at_1000
            value: 86.442
          - type: recall_at_3
            value: 33.678000000000004
          - type: recall_at_5
            value: 39.244
          - type: map_at_1
            value: 15.891
          - type: map_at_10
            value: 22.464000000000002
          - type: map_at_100
            value: 23.483
          - type: map_at_1000
            value: 23.613
          - type: map_at_3
            value: 20.080000000000002
          - type: map_at_5
            value: 21.526
          - type: mrr_at_1
            value: 20.025000000000002
          - type: mrr_at_10
            value: 26.712999999999997
          - type: mrr_at_100
            value: 27.650000000000002
          - type: mrr_at_1000
            value: 27.737000000000002
          - type: mrr_at_3
            value: 24.274
          - type: mrr_at_5
            value: 25.711000000000002
          - type: ndcg_at_1
            value: 20.025000000000002
          - type: ndcg_at_10
            value: 27.028999999999996
          - type: ndcg_at_100
            value: 32.064
          - type: ndcg_at_1000
            value: 35.188
          - type: ndcg_at_3
            value: 22.512999999999998
          - type: ndcg_at_5
            value: 24.89
          - type: precision_at_1
            value: 20.025000000000002
          - type: precision_at_10
            value: 4.776
          - type: precision_at_100
            value: 0.8500000000000001
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 10.531
          - type: precision_at_5
            value: 7.811
          - type: recall_at_1
            value: 15.891
          - type: recall_at_10
            value: 37.261
          - type: recall_at_100
            value: 59.12
          - type: recall_at_1000
            value: 81.356
          - type: recall_at_3
            value: 24.741
          - type: recall_at_5
            value: 30.753999999999998
          - type: map_at_1
            value: 27.544
          - type: map_at_10
            value: 36.283
          - type: map_at_100
            value: 37.467
          - type: map_at_1000
            value: 37.574000000000005
          - type: map_at_3
            value: 33.528999999999996
          - type: map_at_5
            value: 35.028999999999996
          - type: mrr_at_1
            value: 34.166999999999994
          - type: mrr_at_10
            value: 41.866
          - type: mrr_at_100
            value: 42.666
          - type: mrr_at_1000
            value: 42.716
          - type: mrr_at_3
            value: 39.541
          - type: mrr_at_5
            value: 40.768
          - type: ndcg_at_1
            value: 34.166999999999994
          - type: ndcg_at_10
            value: 41.577
          - type: ndcg_at_100
            value: 46.687
          - type: ndcg_at_1000
            value: 48.967
          - type: ndcg_at_3
            value: 37.177
          - type: ndcg_at_5
            value: 39.097
          - type: precision_at_1
            value: 34.166999999999994
          - type: precision_at_10
            value: 7.420999999999999
          - type: precision_at_100
            value: 1.165
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 17.291999999999998
          - type: precision_at_5
            value: 12.166
          - type: recall_at_1
            value: 27.544
          - type: recall_at_10
            value: 51.99399999999999
          - type: recall_at_100
            value: 73.738
          - type: recall_at_1000
            value: 89.33
          - type: recall_at_3
            value: 39.179
          - type: recall_at_5
            value: 44.385999999999996
          - type: map_at_1
            value: 26.661
          - type: map_at_10
            value: 35.475
          - type: map_at_100
            value: 36.626999999999995
          - type: map_at_1000
            value: 36.741
          - type: map_at_3
            value: 32.818000000000005
          - type: map_at_5
            value: 34.397
          - type: mrr_at_1
            value: 32.647999999999996
          - type: mrr_at_10
            value: 40.784
          - type: mrr_at_100
            value: 41.602
          - type: mrr_at_1000
            value: 41.661
          - type: mrr_at_3
            value: 38.68
          - type: mrr_at_5
            value: 39.838
          - type: ndcg_at_1
            value: 32.647999999999996
          - type: ndcg_at_10
            value: 40.697
          - type: ndcg_at_100
            value: 45.799
          - type: ndcg_at_1000
            value: 48.235
          - type: ndcg_at_3
            value: 36.516
          - type: ndcg_at_5
            value: 38.515
          - type: precision_at_1
            value: 32.647999999999996
          - type: precision_at_10
            value: 7.202999999999999
          - type: precision_at_100
            value: 1.1360000000000001
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_3
            value: 17.314
          - type: precision_at_5
            value: 12.145999999999999
          - type: recall_at_1
            value: 26.661
          - type: recall_at_10
            value: 50.995000000000005
          - type: recall_at_100
            value: 73.065
          - type: recall_at_1000
            value: 89.781
          - type: recall_at_3
            value: 39.073
          - type: recall_at_5
            value: 44.395
          - type: map_at_1
            value: 25.946583333333333
          - type: map_at_10
            value: 33.79725
          - type: map_at_100
            value: 34.86408333333333
          - type: map_at_1000
            value: 34.9795
          - type: map_at_3
            value: 31.259999999999998
          - type: map_at_5
            value: 32.71541666666666
          - type: mrr_at_1
            value: 30.863749999999996
          - type: mrr_at_10
            value: 37.99183333333333
          - type: mrr_at_100
            value: 38.790499999999994
          - type: mrr_at_1000
            value: 38.85575000000001
          - type: mrr_at_3
            value: 35.82083333333333
          - type: mrr_at_5
            value: 37.07533333333333
          - type: ndcg_at_1
            value: 30.863749999999996
          - type: ndcg_at_10
            value: 38.52141666666667
          - type: ndcg_at_100
            value: 43.17966666666667
          - type: ndcg_at_1000
            value: 45.64608333333333
          - type: ndcg_at_3
            value: 34.333000000000006
          - type: ndcg_at_5
            value: 36.34975
          - type: precision_at_1
            value: 30.863749999999996
          - type: precision_at_10
            value: 6.598999999999999
          - type: precision_at_100
            value: 1.0502500000000001
          - type: precision_at_1000
            value: 0.14400000000000002
          - type: precision_at_3
            value: 15.557583333333334
          - type: precision_at_5
            value: 11.020000000000001
          - type: recall_at_1
            value: 25.946583333333333
          - type: recall_at_10
            value: 48.36991666666666
          - type: recall_at_100
            value: 69.02408333333334
          - type: recall_at_1000
            value: 86.43858333333331
          - type: recall_at_3
            value: 36.4965
          - type: recall_at_5
            value: 41.76258333333334
          - type: map_at_1
            value: 22.431
          - type: map_at_10
            value: 28.889
          - type: map_at_100
            value: 29.642000000000003
          - type: map_at_1000
            value: 29.742
          - type: map_at_3
            value: 26.998
          - type: map_at_5
            value: 28.172000000000004
          - type: mrr_at_1
            value: 25.307000000000002
          - type: mrr_at_10
            value: 31.763
          - type: mrr_at_100
            value: 32.443
          - type: mrr_at_1000
            value: 32.531
          - type: mrr_at_3
            value: 29.959000000000003
          - type: mrr_at_5
            value: 31.063000000000002
          - type: ndcg_at_1
            value: 25.307000000000002
          - type: ndcg_at_10
            value: 32.586999999999996
          - type: ndcg_at_100
            value: 36.5
          - type: ndcg_at_1000
            value: 39.133
          - type: ndcg_at_3
            value: 29.25
          - type: ndcg_at_5
            value: 31.023
          - type: precision_at_1
            value: 25.307000000000002
          - type: precision_at_10
            value: 4.954
          - type: precision_at_100
            value: 0.747
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 12.577
          - type: precision_at_5
            value: 8.741999999999999
          - type: recall_at_1
            value: 22.431
          - type: recall_at_10
            value: 41.134
          - type: recall_at_100
            value: 59.28600000000001
          - type: recall_at_1000
            value: 78.857
          - type: recall_at_3
            value: 31.926
          - type: recall_at_5
            value: 36.335
          - type: map_at_1
            value: 17.586
          - type: map_at_10
            value: 23.304
          - type: map_at_100
            value: 24.159
          - type: map_at_1000
            value: 24.281
          - type: map_at_3
            value: 21.316
          - type: map_at_5
            value: 22.383
          - type: mrr_at_1
            value: 21.645
          - type: mrr_at_10
            value: 27.365000000000002
          - type: mrr_at_100
            value: 28.108
          - type: mrr_at_1000
            value: 28.192
          - type: mrr_at_3
            value: 25.482
          - type: mrr_at_5
            value: 26.479999999999997
          - type: ndcg_at_1
            value: 21.645
          - type: ndcg_at_10
            value: 27.306
          - type: ndcg_at_100
            value: 31.496000000000002
          - type: ndcg_at_1000
            value: 34.53
          - type: ndcg_at_3
            value: 23.73
          - type: ndcg_at_5
            value: 25.294
          - type: precision_at_1
            value: 21.645
          - type: precision_at_10
            value: 4.797
          - type: precision_at_100
            value: 0.8059999999999999
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 10.850999999999999
          - type: precision_at_5
            value: 7.736
          - type: recall_at_1
            value: 17.586
          - type: recall_at_10
            value: 35.481
          - type: recall_at_100
            value: 54.534000000000006
          - type: recall_at_1000
            value: 76.456
          - type: recall_at_3
            value: 25.335
          - type: recall_at_5
            value: 29.473
          - type: map_at_1
            value: 25.095
          - type: map_at_10
            value: 32.374
          - type: map_at_100
            value: 33.537
          - type: map_at_1000
            value: 33.634
          - type: map_at_3
            value: 30.089
          - type: map_at_5
            value: 31.433
          - type: mrr_at_1
            value: 29.198
          - type: mrr_at_10
            value: 36.01
          - type: mrr_at_100
            value: 37.022
          - type: mrr_at_1000
            value: 37.083
          - type: mrr_at_3
            value: 33.94
          - type: mrr_at_5
            value: 35.148
          - type: ndcg_at_1
            value: 29.198
          - type: ndcg_at_10
            value: 36.729
          - type: ndcg_at_100
            value: 42.114000000000004
          - type: ndcg_at_1000
            value: 44.592
          - type: ndcg_at_3
            value: 32.644
          - type: ndcg_at_5
            value: 34.652
          - type: precision_at_1
            value: 29.198
          - type: precision_at_10
            value: 5.970000000000001
          - type: precision_at_100
            value: 0.967
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 14.396999999999998
          - type: precision_at_5
            value: 10.093
          - type: recall_at_1
            value: 25.095
          - type: recall_at_10
            value: 46.392
          - type: recall_at_100
            value: 69.706
          - type: recall_at_1000
            value: 87.738
          - type: recall_at_3
            value: 35.303000000000004
          - type: recall_at_5
            value: 40.441
          - type: map_at_1
            value: 26.857999999999997
          - type: map_at_10
            value: 34.066
          - type: map_at_100
            value: 35.671
          - type: map_at_1000
            value: 35.881
          - type: map_at_3
            value: 31.304
          - type: map_at_5
            value: 32.885
          - type: mrr_at_1
            value: 32.411
          - type: mrr_at_10
            value: 38.987
          - type: mrr_at_100
            value: 39.894
          - type: mrr_at_1000
            value: 39.959
          - type: mrr_at_3
            value: 36.626999999999995
          - type: mrr_at_5
            value: 38.011
          - type: ndcg_at_1
            value: 32.411
          - type: ndcg_at_10
            value: 39.208
          - type: ndcg_at_100
            value: 44.626
          - type: ndcg_at_1000
            value: 47.43
          - type: ndcg_at_3
            value: 35.091
          - type: ndcg_at_5
            value: 37.119
          - type: precision_at_1
            value: 32.411
          - type: precision_at_10
            value: 7.51
          - type: precision_at_100
            value: 1.486
          - type: precision_at_1000
            value: 0.234
          - type: precision_at_3
            value: 16.14
          - type: precision_at_5
            value: 11.976
          - type: recall_at_1
            value: 26.857999999999997
          - type: recall_at_10
            value: 47.407
          - type: recall_at_100
            value: 72.236
          - type: recall_at_1000
            value: 90.77
          - type: recall_at_3
            value: 35.125
          - type: recall_at_5
            value: 40.522999999999996
          - type: map_at_1
            value: 21.3
          - type: map_at_10
            value: 27.412999999999997
          - type: map_at_100
            value: 28.29
          - type: map_at_1000
            value: 28.398
          - type: map_at_3
            value: 25.169999999999998
          - type: map_at_5
            value: 26.496
          - type: mrr_at_1
            value: 23.29
          - type: mrr_at_10
            value: 29.215000000000003
          - type: mrr_at_100
            value: 30.073
          - type: mrr_at_1000
            value: 30.156
          - type: mrr_at_3
            value: 26.956000000000003
          - type: mrr_at_5
            value: 28.38
          - type: ndcg_at_1
            value: 23.29
          - type: ndcg_at_10
            value: 31.113000000000003
          - type: ndcg_at_100
            value: 35.701
          - type: ndcg_at_1000
            value: 38.505
          - type: ndcg_at_3
            value: 26.727
          - type: ndcg_at_5
            value: 29.037000000000003
          - type: precision_at_1
            value: 23.29
          - type: precision_at_10
            value: 4.787
          - type: precision_at_100
            value: 0.763
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 11.091
          - type: precision_at_5
            value: 7.985
          - type: recall_at_1
            value: 21.3
          - type: recall_at_10
            value: 40.782000000000004
          - type: recall_at_100
            value: 62.13999999999999
          - type: recall_at_1000
            value: 83.012
          - type: recall_at_3
            value: 29.131
          - type: recall_at_5
            value: 34.624
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ClimateFEVER
          revision: None
          split: test
          type: climate-fever
        metrics:
          - type: map_at_1
            value: 9.631
          - type: map_at_10
            value: 16.634999999999998
          - type: map_at_100
            value: 18.23
          - type: map_at_1000
            value: 18.419
          - type: map_at_3
            value: 13.66
          - type: map_at_5
            value: 15.173
          - type: mrr_at_1
            value: 21.368000000000002
          - type: mrr_at_10
            value: 31.56
          - type: mrr_at_100
            value: 32.58
          - type: mrr_at_1000
            value: 32.633
          - type: mrr_at_3
            value: 28.241
          - type: mrr_at_5
            value: 30.225
          - type: ndcg_at_1
            value: 21.368000000000002
          - type: ndcg_at_10
            value: 23.855999999999998
          - type: ndcg_at_100
            value: 30.686999999999998
          - type: ndcg_at_1000
            value: 34.327000000000005
          - type: ndcg_at_3
            value: 18.781
          - type: ndcg_at_5
            value: 20.73
          - type: precision_at_1
            value: 21.368000000000002
          - type: precision_at_10
            value: 7.564
          - type: precision_at_100
            value: 1.496
          - type: precision_at_1000
            value: 0.217
          - type: precision_at_3
            value: 13.876
          - type: precision_at_5
            value: 11.062
          - type: recall_at_1
            value: 9.631
          - type: recall_at_10
            value: 29.517
          - type: recall_at_100
            value: 53.452
          - type: recall_at_1000
            value: 74.115
          - type: recall_at_3
            value: 17.605999999999998
          - type: recall_at_5
            value: 22.505
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DBPedia
          revision: None
          split: test
          type: dbpedia-entity
        metrics:
          - type: map_at_1
            value: 8.885
          - type: map_at_10
            value: 18.798000000000002
          - type: map_at_100
            value: 26.316
          - type: map_at_1000
            value: 27.869
          - type: map_at_3
            value: 13.719000000000001
          - type: map_at_5
            value: 15.716
          - type: mrr_at_1
            value: 66
          - type: mrr_at_10
            value: 74.263
          - type: mrr_at_100
            value: 74.519
          - type: mrr_at_1000
            value: 74.531
          - type: mrr_at_3
            value: 72.458
          - type: mrr_at_5
            value: 73.321
          - type: ndcg_at_1
            value: 53.87499999999999
          - type: ndcg_at_10
            value: 40.355999999999995
          - type: ndcg_at_100
            value: 44.366
          - type: ndcg_at_1000
            value: 51.771
          - type: ndcg_at_3
            value: 45.195
          - type: ndcg_at_5
            value: 42.187000000000005
          - type: precision_at_1
            value: 66
          - type: precision_at_10
            value: 31.75
          - type: precision_at_100
            value: 10.11
          - type: precision_at_1000
            value: 1.9800000000000002
          - type: precision_at_3
            value: 48.167
          - type: precision_at_5
            value: 40.050000000000004
          - type: recall_at_1
            value: 8.885
          - type: recall_at_10
            value: 24.471999999999998
          - type: recall_at_100
            value: 49.669000000000004
          - type: recall_at_1000
            value: 73.383
          - type: recall_at_3
            value: 14.872
          - type: recall_at_5
            value: 18.262999999999998
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EmotionClassification
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
          split: test
          type: mteb/emotion
        metrics:
          - type: accuracy
            value: 45.18
          - type: f1
            value: 40.26878691789978
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB FEVER
          revision: None
          split: test
          type: fever
        metrics:
          - type: map_at_1
            value: 62.751999999999995
          - type: map_at_10
            value: 74.131
          - type: map_at_100
            value: 74.407
          - type: map_at_1000
            value: 74.423
          - type: map_at_3
            value: 72.329
          - type: map_at_5
            value: 73.555
          - type: mrr_at_1
            value: 67.282
          - type: mrr_at_10
            value: 78.292
          - type: mrr_at_100
            value: 78.455
          - type: mrr_at_1000
            value: 78.458
          - type: mrr_at_3
            value: 76.755
          - type: mrr_at_5
            value: 77.839
          - type: ndcg_at_1
            value: 67.282
          - type: ndcg_at_10
            value: 79.443
          - type: ndcg_at_100
            value: 80.529
          - type: ndcg_at_1000
            value: 80.812
          - type: ndcg_at_3
            value: 76.281
          - type: ndcg_at_5
            value: 78.235
          - type: precision_at_1
            value: 67.282
          - type: precision_at_10
            value: 10.078
          - type: precision_at_100
            value: 1.082
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 30.178
          - type: precision_at_5
            value: 19.232
          - type: recall_at_1
            value: 62.751999999999995
          - type: recall_at_10
            value: 91.521
          - type: recall_at_100
            value: 95.997
          - type: recall_at_1000
            value: 97.775
          - type: recall_at_3
            value: 83.131
          - type: recall_at_5
            value: 87.93299999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA2018
          revision: None
          split: test
          type: fiqa
        metrics:
          - type: map_at_1
            value: 18.861
          - type: map_at_10
            value: 30.252000000000002
          - type: map_at_100
            value: 32.082
          - type: map_at_1000
            value: 32.261
          - type: map_at_3
            value: 25.909
          - type: map_at_5
            value: 28.296
          - type: mrr_at_1
            value: 37.346000000000004
          - type: mrr_at_10
            value: 45.802
          - type: mrr_at_100
            value: 46.611999999999995
          - type: mrr_at_1000
            value: 46.659
          - type: mrr_at_3
            value: 43.056
          - type: mrr_at_5
            value: 44.637
          - type: ndcg_at_1
            value: 37.346000000000004
          - type: ndcg_at_10
            value: 38.169
          - type: ndcg_at_100
            value: 44.864
          - type: ndcg_at_1000
            value: 47.974
          - type: ndcg_at_3
            value: 33.619
          - type: ndcg_at_5
            value: 35.317
          - type: precision_at_1
            value: 37.346000000000004
          - type: precision_at_10
            value: 10.693999999999999
          - type: precision_at_100
            value: 1.775
          - type: precision_at_1000
            value: 0.231
          - type: precision_at_3
            value: 22.325
          - type: precision_at_5
            value: 16.852
          - type: recall_at_1
            value: 18.861
          - type: recall_at_10
            value: 45.672000000000004
          - type: recall_at_100
            value: 70.60499999999999
          - type: recall_at_1000
            value: 89.216
          - type: recall_at_3
            value: 30.361
          - type: recall_at_5
            value: 36.998999999999995
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HotpotQA
          revision: None
          split: test
          type: hotpotqa
        metrics:
          - type: map_at_1
            value: 37.852999999999994
          - type: map_at_10
            value: 59.961
          - type: map_at_100
            value: 60.78
          - type: map_at_1000
            value: 60.843
          - type: map_at_3
            value: 56.39999999999999
          - type: map_at_5
            value: 58.646
          - type: mrr_at_1
            value: 75.70599999999999
          - type: mrr_at_10
            value: 82.321
          - type: mrr_at_100
            value: 82.516
          - type: mrr_at_1000
            value: 82.525
          - type: mrr_at_3
            value: 81.317
          - type: mrr_at_5
            value: 81.922
          - type: ndcg_at_1
            value: 75.70599999999999
          - type: ndcg_at_10
            value: 68.557
          - type: ndcg_at_100
            value: 71.485
          - type: ndcg_at_1000
            value: 72.71600000000001
          - type: ndcg_at_3
            value: 63.524
          - type: ndcg_at_5
            value: 66.338
          - type: precision_at_1
            value: 75.70599999999999
          - type: precision_at_10
            value: 14.463000000000001
          - type: precision_at_100
            value: 1.677
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 40.806
          - type: precision_at_5
            value: 26.709
          - type: recall_at_1
            value: 37.852999999999994
          - type: recall_at_10
            value: 72.316
          - type: recall_at_100
            value: 83.842
          - type: recall_at_1000
            value: 91.999
          - type: recall_at_3
            value: 61.209
          - type: recall_at_5
            value: 66.77199999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ImdbClassification
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
          split: test
          type: mteb/imdb
        metrics:
          - type: accuracy
            value: 85.46039999999999
          - type: ap
            value: 79.9812521351881
          - type: f1
            value: 85.31722909702084
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MSMARCO
          revision: None
          split: dev
          type: msmarco
        metrics:
          - type: map_at_1
            value: 22.704
          - type: map_at_10
            value: 35.329
          - type: map_at_100
            value: 36.494
          - type: map_at_1000
            value: 36.541000000000004
          - type: map_at_3
            value: 31.476
          - type: map_at_5
            value: 33.731
          - type: mrr_at_1
            value: 23.294999999999998
          - type: mrr_at_10
            value: 35.859
          - type: mrr_at_100
            value: 36.968
          - type: mrr_at_1000
            value: 37.008
          - type: mrr_at_3
            value: 32.085
          - type: mrr_at_5
            value: 34.299
          - type: ndcg_at_1
            value: 23.324
          - type: ndcg_at_10
            value: 42.274
          - type: ndcg_at_100
            value: 47.839999999999996
          - type: ndcg_at_1000
            value: 48.971
          - type: ndcg_at_3
            value: 34.454
          - type: ndcg_at_5
            value: 38.464
          - type: precision_at_1
            value: 23.324
          - type: precision_at_10
            value: 6.648
          - type: precision_at_100
            value: 0.9440000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.674999999999999
          - type: precision_at_5
            value: 10.850999999999999
          - type: recall_at_1
            value: 22.704
          - type: recall_at_10
            value: 63.660000000000004
          - type: recall_at_100
            value: 89.29899999999999
          - type: recall_at_1000
            value: 97.88900000000001
          - type: recall_at_3
            value: 42.441
          - type: recall_at_5
            value: 52.04
        task:
          type: Retrieval
      - dataset:
          config: en
          name: MTEB MTOPDomainClassification (en)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 93.1326949384405
          - type: f1
            value: 92.89743579612082
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MTOPDomainClassification (de)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 89.62524654832347
          - type: f1
            value: 88.65106082263151
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MTOPDomainClassification (es)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 90.59039359573046
          - type: f1
            value: 90.31532892105662
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MTOPDomainClassification (fr)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 86.21046038208581
          - type: f1
            value: 86.41459529813113
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MTOPDomainClassification (hi)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 87.3180351380423
          - type: f1
            value: 86.71383078226444
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MTOPDomainClassification (th)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 86.24231464737792
          - type: f1
            value: 86.31845567592403
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MTOPIntentClassification (en)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 75.27131782945736
          - type: f1
            value: 57.52079940417103
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MTOPIntentClassification (de)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 71.2341504649197
          - type: f1
            value: 51.349951558039244
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MTOPIntentClassification (es)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 71.27418278852569
          - type: f1
            value: 50.1714985749095
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MTOPIntentClassification (fr)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 67.68243031631694
          - type: f1
            value: 50.1066160836192
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MTOPIntentClassification (hi)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 69.2362854069559
          - type: f1
            value: 48.821279948766424
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MTOPIntentClassification (th)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 71.71428571428571
          - type: f1
            value: 53.94611389496195
        task:
          type: Classification
      - dataset:
          config: af
          name: MTEB MassiveIntentClassification (af)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 59.97646267652992
          - type: f1
            value: 57.26797883561521
        task:
          type: Classification
      - dataset:
          config: am
          name: MTEB MassiveIntentClassification (am)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 53.65501008742435
          - type: f1
            value: 50.416258382177034
        task:
          type: Classification
      - dataset:
          config: ar
          name: MTEB MassiveIntentClassification (ar)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 57.45796906523201
          - type: f1
            value: 53.306690547422185
        task:
          type: Classification
      - dataset:
          config: az
          name: MTEB MassiveIntentClassification (az)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.59246805648957
          - type: f1
            value: 59.818381969051494
        task:
          type: Classification
      - dataset:
          config: bn
          name: MTEB MassiveIntentClassification (bn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 61.126429051782104
          - type: f1
            value: 58.25993593933026
        task:
          type: Classification
      - dataset:
          config: cy
          name: MTEB MassiveIntentClassification (cy)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 50.057162071284466
          - type: f1
            value: 46.96095728790911
        task:
          type: Classification
      - dataset:
          config: da
          name: MTEB MassiveIntentClassification (da)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.64425016812375
          - type: f1
            value: 62.858291698755764
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MassiveIntentClassification (de)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.08944182918628
          - type: f1
            value: 62.44639030604241
        task:
          type: Classification
      - dataset:
          config: el
          name: MTEB MassiveIntentClassification (el)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.68056489576328
          - type: f1
            value: 61.775326758789504
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveIntentClassification (en)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 72.11163416274377
          - type: f1
            value: 69.70789096927015
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MassiveIntentClassification (es)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.40282447881641
          - type: f1
            value: 66.38492065671895
        task:
          type: Classification
      - dataset:
          config: fa
          name: MTEB MassiveIntentClassification (fa)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.24613315400134
          - type: f1
            value: 64.3348019501336
        task:
          type: Classification
      - dataset:
          config: fi
          name: MTEB MassiveIntentClassification (fi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 65.78345662407531
          - type: f1
            value: 62.21279452354622
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MassiveIntentClassification (fr)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.9455279085407
          - type: f1
            value: 65.48193124964094
        task:
          type: Classification
      - dataset:
          config: he
          name: MTEB MassiveIntentClassification (he)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.05110961667788
          - type: f1
            value: 58.097856564684534
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MassiveIntentClassification (hi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.95292535305985
          - type: f1
            value: 62.09182174767901
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveIntentClassification (hu)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.97310020174848
          - type: f1
            value: 61.14252567730396
        task:
          type: Classification
      - dataset:
          config: hy
          name: MTEB MassiveIntentClassification (hy)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.08069939475453
          - type: f1
            value: 57.044041742492034
        task:
          type: Classification
      - dataset:
          config: id
          name: MTEB MassiveIntentClassification (id)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.63752521856085
          - type: f1
            value: 63.889340907205316
        task:
          type: Classification
      - dataset:
          config: is
          name: MTEB MassiveIntentClassification (is)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 56.385339609952936
          - type: f1
            value: 53.449033750088304
        task:
          type: Classification
      - dataset:
          config: it
          name: MTEB MassiveIntentClassification (it)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.93073301950234
          - type: f1
            value: 65.9884357824104
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB MassiveIntentClassification (ja)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.94418291862812
          - type: f1
            value: 66.48740222583132
        task:
          type: Classification
      - dataset:
          config: jv
          name: MTEB MassiveIntentClassification (jv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 54.26025554808339
          - type: f1
            value: 50.19562815100793
        task:
          type: Classification
      - dataset:
          config: ka
          name: MTEB MassiveIntentClassification (ka)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 48.98789509078682
          - type: f1
            value: 46.65788438676836
        task:
          type: Classification
      - dataset:
          config: km
          name: MTEB MassiveIntentClassification (km)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 44.68728984532616
          - type: f1
            value: 41.642419349541996
        task:
          type: Classification
      - dataset:
          config: kn
          name: MTEB MassiveIntentClassification (kn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 59.19300605245461
          - type: f1
            value: 55.8626492442437
        task:
          type: Classification
      - dataset:
          config: ko
          name: MTEB MassiveIntentClassification (ko)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.33826496301278
          - type: f1
            value: 63.89499791648792
        task:
          type: Classification
      - dataset:
          config: lv
          name: MTEB MassiveIntentClassification (lv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.33960995292536
          - type: f1
            value: 57.15242464180892
        task:
          type: Classification
      - dataset:
          config: ml
          name: MTEB MassiveIntentClassification (ml)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 63.09347679892402
          - type: f1
            value: 59.64733214063841
        task:
          type: Classification
      - dataset:
          config: mn
          name: MTEB MassiveIntentClassification (mn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 58.75924680564896
          - type: f1
            value: 55.96585692366827
        task:
          type: Classification
      - dataset:
          config: ms
          name: MTEB MassiveIntentClassification (ms)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.48486886348352
          - type: f1
            value: 59.45143559032946
        task:
          type: Classification
      - dataset:
          config: my
          name: MTEB MassiveIntentClassification (my)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 58.56422326832549
          - type: f1
            value: 54.96368702901926
        task:
          type: Classification
      - dataset:
          config: nb
          name: MTEB MassiveIntentClassification (nb)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.18022864828512
          - type: f1
            value: 63.05369805040634
        task:
          type: Classification
      - dataset:
          config: nl
          name: MTEB MassiveIntentClassification (nl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.30329522528581
          - type: f1
            value: 64.06084612020727
        task:
          type: Classification
      - dataset:
          config: pl
          name: MTEB MassiveIntentClassification (pl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.36919973100201
          - type: f1
            value: 65.12154124788887
        task:
          type: Classification
      - dataset:
          config: pt
          name: MTEB MassiveIntentClassification (pt)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.98117014122394
          - type: f1
            value: 66.41847559806962
        task:
          type: Classification
      - dataset:
          config: ro
          name: MTEB MassiveIntentClassification (ro)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 65.53799596503026
          - type: f1
            value: 62.17067330740817
        task:
          type: Classification
      - dataset:
          config: ru
          name: MTEB MassiveIntentClassification (ru)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.01815736381977
          - type: f1
            value: 66.24988369607843
        task:
          type: Classification
      - dataset:
          config: sl
          name: MTEB MassiveIntentClassification (sl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.34700739744452
          - type: f1
            value: 59.957933424941636
        task:
          type: Classification
      - dataset:
          config: sq
          name: MTEB MassiveIntentClassification (sq)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 61.23402824478815
          - type: f1
            value: 57.98836976018471
        task:
          type: Classification
      - dataset:
          config: sv
          name: MTEB MassiveIntentClassification (sv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.54068594485541
          - type: f1
            value: 65.43849680666855
        task:
          type: Classification
      - dataset:
          config: sw
          name: MTEB MassiveIntentClassification (sw)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 55.998655010087425
          - type: f1
            value: 52.83737515406804
        task:
          type: Classification
      - dataset:
          config: ta
          name: MTEB MassiveIntentClassification (ta)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 58.71217215870882
          - type: f1
            value: 55.051794977833026
        task:
          type: Classification
      - dataset:
          config: te
          name: MTEB MassiveIntentClassification (te)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 59.724277067921996
          - type: f1
            value: 56.33485571838306
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MassiveIntentClassification (th)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 65.59515803631473
          - type: f1
            value: 64.96772366193588
        task:
          type: Classification
      - dataset:
          config: tl
          name: MTEB MassiveIntentClassification (tl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.860793544048406
          - type: f1
            value: 58.148845819115394
        task:
          type: Classification
      - dataset:
          config: tr
          name: MTEB MassiveIntentClassification (tr)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.40753194351043
          - type: f1
            value: 63.18903778054698
        task:
          type: Classification
      - dataset:
          config: ur
          name: MTEB MassiveIntentClassification (ur)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 61.52320107599194
          - type: f1
            value: 58.356144563398516
        task:
          type: Classification
      - dataset:
          config: vi
          name: MTEB MassiveIntentClassification (vi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.17014122394083
          - type: f1
            value: 63.919964062638925
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveIntentClassification (zh-CN)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.15601882985878
          - type: f1
            value: 67.01451905761371
        task:
          type: Classification
      - dataset:
          config: zh-TW
          name: MTEB MassiveIntentClassification (zh-TW)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.65030262273034
          - type: f1
            value: 64.14420425129063
        task:
          type: Classification
      - dataset:
          config: af
          name: MTEB MassiveScenarioClassification (af)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 65.08742434431743
          - type: f1
            value: 63.044060042311756
        task:
          type: Classification
      - dataset:
          config: am
          name: MTEB MassiveScenarioClassification (am)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 58.52387357094821
          - type: f1
            value: 56.82398588814534
        task:
          type: Classification
      - dataset:
          config: ar
          name: MTEB MassiveScenarioClassification (ar)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.239408204438476
          - type: f1
            value: 61.92570286170469
        task:
          type: Classification
      - dataset:
          config: az
          name: MTEB MassiveScenarioClassification (az)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 63.74915938130463
          - type: f1
            value: 62.130740689396276
        task:
          type: Classification
      - dataset:
          config: bn
          name: MTEB MassiveScenarioClassification (bn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 65.00336247478144
          - type: f1
            value: 63.71080635228055
        task:
          type: Classification
      - dataset:
          config: cy
          name: MTEB MassiveScenarioClassification (cy)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 52.837928715534645
          - type: f1
            value: 50.390741680320836
        task:
          type: Classification
      - dataset:
          config: da
          name: MTEB MassiveScenarioClassification (da)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.42098184263618
          - type: f1
            value: 71.41355113538995
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MassiveScenarioClassification (de)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.95359784801613
          - type: f1
            value: 71.42699340156742
        task:
          type: Classification
      - dataset:
          config: el
          name: MTEB MassiveScenarioClassification (el)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.18157363819772
          - type: f1
            value: 69.74836113037671
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveScenarioClassification (en)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 77.08137188971082
          - type: f1
            value: 76.78000685068261
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MassiveScenarioClassification (es)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.5030262273033
          - type: f1
            value: 71.71620130425673
        task:
          type: Classification
      - dataset:
          config: fa
          name: MTEB MassiveScenarioClassification (fa)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.24546065904505
          - type: f1
            value: 69.07638311730359
        task:
          type: Classification
      - dataset:
          config: fi
          name: MTEB MassiveScenarioClassification (fi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 69.12911903160726
          - type: f1
            value: 68.32651736539815
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MassiveScenarioClassification (fr)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.89307330195025
          - type: f1
            value: 71.33986549860187
        task:
          type: Classification
      - dataset:
          config: he
          name: MTEB MassiveScenarioClassification (he)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 67.44451916610626
          - type: f1
            value: 66.90192664503866
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MassiveScenarioClassification (hi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 69.16274377942166
          - type: f1
            value: 68.01090953775066
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveScenarioClassification (hu)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.75319435104237
          - type: f1
            value: 70.18035309201403
        task:
          type: Classification
      - dataset:
          config: hy
          name: MTEB MassiveScenarioClassification (hy)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 63.14391392064559
          - type: f1
            value: 61.48286540778145
        task:
          type: Classification
      - dataset:
          config: id
          name: MTEB MassiveScenarioClassification (id)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.70275722932078
          - type: f1
            value: 70.26164779846495
        task:
          type: Classification
      - dataset:
          config: is
          name: MTEB MassiveScenarioClassification (is)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 60.93813046402153
          - type: f1
            value: 58.8852862116525
        task:
          type: Classification
      - dataset:
          config: it
          name: MTEB MassiveScenarioClassification (it)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.320107599193
          - type: f1
            value: 72.19836409602924
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB MassiveScenarioClassification (ja)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.65366509751176
          - type: f1
            value: 74.55188288799579
        task:
          type: Classification
      - dataset:
          config: jv
          name: MTEB MassiveScenarioClassification (jv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 59.694014794889036
          - type: f1
            value: 58.11353311721067
        task:
          type: Classification
      - dataset:
          config: ka
          name: MTEB MassiveScenarioClassification (ka)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 54.37457969065231
          - type: f1
            value: 52.81306134311697
        task:
          type: Classification
      - dataset:
          config: km
          name: MTEB MassiveScenarioClassification (km)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 48.3086751849361
          - type: f1
            value: 45.396449765419376
        task:
          type: Classification
      - dataset:
          config: kn
          name: MTEB MassiveScenarioClassification (kn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.151983860121064
          - type: f1
            value: 60.31762544281696
        task:
          type: Classification
      - dataset:
          config: ko
          name: MTEB MassiveScenarioClassification (ko)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.44788164088769
          - type: f1
            value: 71.68150151736367
        task:
          type: Classification
      - dataset:
          config: lv
          name: MTEB MassiveScenarioClassification (lv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.81439139206455
          - type: f1
            value: 62.06735559105593
        task:
          type: Classification
      - dataset:
          config: ml
          name: MTEB MassiveScenarioClassification (ml)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 68.04303967720242
          - type: f1
            value: 66.68298851670133
        task:
          type: Classification
      - dataset:
          config: mn
          name: MTEB MassiveScenarioClassification (mn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 61.43913920645595
          - type: f1
            value: 60.25605977560783
        task:
          type: Classification
      - dataset:
          config: ms
          name: MTEB MassiveScenarioClassification (ms)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.90316072629456
          - type: f1
            value: 65.1325924692381
        task:
          type: Classification
      - dataset:
          config: my
          name: MTEB MassiveScenarioClassification (my)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 61.63752521856086
          - type: f1
            value: 59.14284778039585
        task:
          type: Classification
      - dataset:
          config: nb
          name: MTEB MassiveScenarioClassification (nb)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.63080026899797
          - type: f1
            value: 70.89771864626877
        task:
          type: Classification
      - dataset:
          config: nl
          name: MTEB MassiveScenarioClassification (nl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.10827168796234
          - type: f1
            value: 71.71954219691159
        task:
          type: Classification
      - dataset:
          config: pl
          name: MTEB MassiveScenarioClassification (pl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.59515803631471
          - type: f1
            value: 70.05040128099003
        task:
          type: Classification
      - dataset:
          config: pt
          name: MTEB MassiveScenarioClassification (pt)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.83389374579691
          - type: f1
            value: 70.84877936562735
        task:
          type: Classification
      - dataset:
          config: ro
          name: MTEB MassiveScenarioClassification (ro)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 69.18628110289173
          - type: f1
            value: 68.97232927921841
        task:
          type: Classification
      - dataset:
          config: ru
          name: MTEB MassiveScenarioClassification (ru)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.99260255548083
          - type: f1
            value: 72.85139492157732
        task:
          type: Classification
      - dataset:
          config: sl
          name: MTEB MassiveScenarioClassification (sl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 65.26227303295225
          - type: f1
            value: 65.08833655469431
        task:
          type: Classification
      - dataset:
          config: sq
          name: MTEB MassiveScenarioClassification (sq)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.48621385339611
          - type: f1
            value: 64.43483199071298
        task:
          type: Classification
      - dataset:
          config: sv
          name: MTEB MassiveScenarioClassification (sv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 73.14391392064559
          - type: f1
            value: 72.2580822579741
        task:
          type: Classification
      - dataset:
          config: sw
          name: MTEB MassiveScenarioClassification (sw)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 59.88567585743107
          - type: f1
            value: 58.3073765932569
        task:
          type: Classification
      - dataset:
          config: ta
          name: MTEB MassiveScenarioClassification (ta)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.38399462004034
          - type: f1
            value: 60.82139544252606
        task:
          type: Classification
      - dataset:
          config: te
          name: MTEB MassiveScenarioClassification (te)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.58574310692671
          - type: f1
            value: 60.71443370385374
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MassiveScenarioClassification (th)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.61398789509079
          - type: f1
            value: 70.99761812049401
        task:
          type: Classification
      - dataset:
          config: tl
          name: MTEB MassiveScenarioClassification (tl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.73705447209146
          - type: f1
            value: 61.680849331794796
        task:
          type: Classification
      - dataset:
          config: tr
          name: MTEB MassiveScenarioClassification (tr)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.66778749159381
          - type: f1
            value: 71.17320646080115
        task:
          type: Classification
      - dataset:
          config: ur
          name: MTEB MassiveScenarioClassification (ur)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 64.640215198386
          - type: f1
            value: 63.301805157015444
        task:
          type: Classification
      - dataset:
          config: vi
          name: MTEB MassiveScenarioClassification (vi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.00672494956288
          - type: f1
            value: 70.26005548582106
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveScenarioClassification (zh-CN)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 75.42030934767989
          - type: f1
            value: 75.2074842882598
        task:
          type: Classification
      - dataset:
          config: zh-TW
          name: MTEB MassiveScenarioClassification (zh-TW)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.69266980497646
          - type: f1
            value: 70.94103167391192
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedrxivClusteringP2P
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
          split: test
          type: mteb/medrxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 28.91697191169135
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MedrxivClusteringS2S
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
          split: test
          type: mteb/medrxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 28.434000079573313
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MindSmallReranking
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
          split: test
          type: mteb/mind_small
        metrics:
          - type: map
            value: 30.96683513343383
          - type: mrr
            value: 31.967364078714834
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB NFCorpus
          revision: None
          split: test
          type: nfcorpus
        metrics:
          - type: map_at_1
            value: 5.5280000000000005
          - type: map_at_10
            value: 11.793
          - type: map_at_100
            value: 14.496999999999998
          - type: map_at_1000
            value: 15.783
          - type: map_at_3
            value: 8.838
          - type: map_at_5
            value: 10.07
          - type: mrr_at_1
            value: 43.653
          - type: mrr_at_10
            value: 51.531000000000006
          - type: mrr_at_100
            value: 52.205
          - type: mrr_at_1000
            value: 52.242999999999995
          - type: mrr_at_3
            value: 49.431999999999995
          - type: mrr_at_5
            value: 50.470000000000006
          - type: ndcg_at_1
            value: 42.415000000000006
          - type: ndcg_at_10
            value: 32.464999999999996
          - type: ndcg_at_100
            value: 28.927999999999997
          - type: ndcg_at_1000
            value: 37.629000000000005
          - type: ndcg_at_3
            value: 37.845
          - type: ndcg_at_5
            value: 35.147
          - type: precision_at_1
            value: 43.653
          - type: precision_at_10
            value: 23.932000000000002
          - type: precision_at_100
            value: 7.17
          - type: precision_at_1000
            value: 1.967
          - type: precision_at_3
            value: 35.397
          - type: precision_at_5
            value: 29.907
          - type: recall_at_1
            value: 5.5280000000000005
          - type: recall_at_10
            value: 15.568000000000001
          - type: recall_at_100
            value: 28.54
          - type: recall_at_1000
            value: 59.864
          - type: recall_at_3
            value: 9.822000000000001
          - type: recall_at_5
            value: 11.726
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ
          revision: None
          split: test
          type: nq
        metrics:
          - type: map_at_1
            value: 37.041000000000004
          - type: map_at_10
            value: 52.664
          - type: map_at_100
            value: 53.477
          - type: map_at_1000
            value: 53.505
          - type: map_at_3
            value: 48.510999999999996
          - type: map_at_5
            value: 51.036
          - type: mrr_at_1
            value: 41.338
          - type: mrr_at_10
            value: 55.071000000000005
          - type: mrr_at_100
            value: 55.672
          - type: mrr_at_1000
            value: 55.689
          - type: mrr_at_3
            value: 51.82
          - type: mrr_at_5
            value: 53.852
          - type: ndcg_at_1
            value: 41.338
          - type: ndcg_at_10
            value: 60.01800000000001
          - type: ndcg_at_100
            value: 63.409000000000006
          - type: ndcg_at_1000
            value: 64.017
          - type: ndcg_at_3
            value: 52.44799999999999
          - type: ndcg_at_5
            value: 56.571000000000005
          - type: precision_at_1
            value: 41.338
          - type: precision_at_10
            value: 9.531
          - type: precision_at_100
            value: 1.145
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 23.416
          - type: precision_at_5
            value: 16.46
          - type: recall_at_1
            value: 37.041000000000004
          - type: recall_at_10
            value: 79.76299999999999
          - type: recall_at_100
            value: 94.39
          - type: recall_at_1000
            value: 98.851
          - type: recall_at_3
            value: 60.465
          - type: recall_at_5
            value: 69.906
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB QuoraRetrieval
          revision: None
          split: test
          type: quora
        metrics:
          - type: map_at_1
            value: 69.952
          - type: map_at_10
            value: 83.758
          - type: map_at_100
            value: 84.406
          - type: map_at_1000
            value: 84.425
          - type: map_at_3
            value: 80.839
          - type: map_at_5
            value: 82.646
          - type: mrr_at_1
            value: 80.62
          - type: mrr_at_10
            value: 86.947
          - type: mrr_at_100
            value: 87.063
          - type: mrr_at_1000
            value: 87.064
          - type: mrr_at_3
            value: 85.96000000000001
          - type: mrr_at_5
            value: 86.619
          - type: ndcg_at_1
            value: 80.63
          - type: ndcg_at_10
            value: 87.64800000000001
          - type: ndcg_at_100
            value: 88.929
          - type: ndcg_at_1000
            value: 89.054
          - type: ndcg_at_3
            value: 84.765
          - type: ndcg_at_5
            value: 86.291
          - type: precision_at_1
            value: 80.63
          - type: precision_at_10
            value: 13.314
          - type: precision_at_100
            value: 1.525
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.1
          - type: precision_at_5
            value: 24.372
          - type: recall_at_1
            value: 69.952
          - type: recall_at_10
            value: 94.955
          - type: recall_at_100
            value: 99.38
          - type: recall_at_1000
            value: 99.96000000000001
          - type: recall_at_3
            value: 86.60600000000001
          - type: recall_at_5
            value: 90.997
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB RedditClustering
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
          split: test
          type: mteb/reddit-clustering
        metrics:
          - type: v_measure
            value: 42.41329517878427
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB RedditClusteringP2P
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
          split: test
          type: mteb/reddit-clustering-p2p
        metrics:
          - type: v_measure
            value: 55.171278362748666
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB SCIDOCS
          revision: None
          split: test
          type: scidocs
        metrics:
          - type: map_at_1
            value: 4.213
          - type: map_at_10
            value: 9.895
          - type: map_at_100
            value: 11.776
          - type: map_at_1000
            value: 12.084
          - type: map_at_3
            value: 7.2669999999999995
          - type: map_at_5
            value: 8.620999999999999
          - type: mrr_at_1
            value: 20.8
          - type: mrr_at_10
            value: 31.112000000000002
          - type: mrr_at_100
            value: 32.274
          - type: mrr_at_1000
            value: 32.35
          - type: mrr_at_3
            value: 28.133000000000003
          - type: mrr_at_5
            value: 29.892999999999997
          - type: ndcg_at_1
            value: 20.8
          - type: ndcg_at_10
            value: 17.163999999999998
          - type: ndcg_at_100
            value: 24.738
          - type: ndcg_at_1000
            value: 30.316
          - type: ndcg_at_3
            value: 16.665
          - type: ndcg_at_5
            value: 14.478
          - type: precision_at_1
            value: 20.8
          - type: precision_at_10
            value: 8.74
          - type: precision_at_100
            value: 1.963
          - type: precision_at_1000
            value: 0.33
          - type: precision_at_3
            value: 15.467
          - type: precision_at_5
            value: 12.6
          - type: recall_at_1
            value: 4.213
          - type: recall_at_10
            value: 17.698
          - type: recall_at_100
            value: 39.838
          - type: recall_at_1000
            value: 66.893
          - type: recall_at_3
            value: 9.418
          - type: recall_at_5
            value: 12.773000000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SICK-R
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
          split: test
          type: mteb/sickr-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.90453315738294
          - type: cos_sim_spearman
            value: 78.51197850080254
          - type: euclidean_pearson
            value: 80.09647123597748
          - type: euclidean_spearman
            value: 78.63548011514061
          - type: manhattan_pearson
            value: 80.10645285675231
          - type: manhattan_spearman
            value: 78.57861806068901
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS12
          revision: a0d554a64d88156834ff5ae9920b964011b16384
          split: test
          type: mteb/sts12-sts
        metrics:
          - type: cos_sim_pearson
            value: 84.2616156846401
          - type: cos_sim_spearman
            value: 76.69713867850156
          - type: euclidean_pearson
            value: 77.97948563800394
          - type: euclidean_spearman
            value: 74.2371211567807
          - type: manhattan_pearson
            value: 77.69697879669705
          - type: manhattan_spearman
            value: 73.86529778022278
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS13
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
          split: test
          type: mteb/sts13-sts
        metrics:
          - type: cos_sim_pearson
            value: 77.0293269315045
          - type: cos_sim_spearman
            value: 78.02555120584198
          - type: euclidean_pearson
            value: 78.25398100379078
          - type: euclidean_spearman
            value: 78.66963870599464
          - type: manhattan_pearson
            value: 78.14314682167348
          - type: manhattan_spearman
            value: 78.57692322969135
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS14
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
          split: test
          type: mteb/sts14-sts
        metrics:
          - type: cos_sim_pearson
            value: 79.16989925136942
          - type: cos_sim_spearman
            value: 76.5996225327091
          - type: euclidean_pearson
            value: 77.8319003279786
          - type: euclidean_spearman
            value: 76.42824009468998
          - type: manhattan_pearson
            value: 77.69118862737736
          - type: manhattan_spearman
            value: 76.25568104762812
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS15
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
          split: test
          type: mteb/sts15-sts
        metrics:
          - type: cos_sim_pearson
            value: 87.42012286935325
          - type: cos_sim_spearman
            value: 88.15654297884122
          - type: euclidean_pearson
            value: 87.34082819427852
          - type: euclidean_spearman
            value: 88.06333589547084
          - type: manhattan_pearson
            value: 87.25115596784842
          - type: manhattan_spearman
            value: 87.9559927695203
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS16
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
          split: test
          type: mteb/sts16-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.88222044996712
          - type: cos_sim_spearman
            value: 84.28476589061077
          - type: euclidean_pearson
            value: 83.17399758058309
          - type: euclidean_spearman
            value: 83.85497357244542
          - type: manhattan_pearson
            value: 83.0308397703786
          - type: manhattan_spearman
            value: 83.71554539935046
        task:
          type: STS
      - dataset:
          config: ko-ko
          name: MTEB STS17 (ko-ko)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 80.20682986257339
          - type: cos_sim_spearman
            value: 79.94567120362092
          - type: euclidean_pearson
            value: 79.43122480368902
          - type: euclidean_spearman
            value: 79.94802077264987
          - type: manhattan_pearson
            value: 79.32653021527081
          - type: manhattan_spearman
            value: 79.80961146709178
        task:
          type: STS
      - dataset:
          config: ar-ar
          name: MTEB STS17 (ar-ar)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 74.46578144394383
          - type: cos_sim_spearman
            value: 74.52496637472179
          - type: euclidean_pearson
            value: 72.2903807076809
          - type: euclidean_spearman
            value: 73.55549359771645
          - type: manhattan_pearson
            value: 72.09324837709393
          - type: manhattan_spearman
            value: 73.36743103606581
        task:
          type: STS
      - dataset:
          config: en-ar
          name: MTEB STS17 (en-ar)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 71.37272335116
          - type: cos_sim_spearman
            value: 71.26702117766037
          - type: euclidean_pearson
            value: 67.114829954434
          - type: euclidean_spearman
            value: 66.37938893947761
          - type: manhattan_pearson
            value: 66.79688574095246
          - type: manhattan_spearman
            value: 66.17292828079667
        task:
          type: STS
      - dataset:
          config: en-de
          name: MTEB STS17 (en-de)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 80.61016770129092
          - type: cos_sim_spearman
            value: 82.08515426632214
          - type: euclidean_pearson
            value: 80.557340361131
          - type: euclidean_spearman
            value: 80.37585812266175
          - type: manhattan_pearson
            value: 80.6782873404285
          - type: manhattan_spearman
            value: 80.6678073032024
        task:
          type: STS
      - dataset:
          config: en-en
          name: MTEB STS17 (en-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 87.00150745350108
          - type: cos_sim_spearman
            value: 87.83441972211425
          - type: euclidean_pearson
            value: 87.94826702308792
          - type: euclidean_spearman
            value: 87.46143974860725
          - type: manhattan_pearson
            value: 87.97560344306105
          - type: manhattan_spearman
            value: 87.5267102829796
        task:
          type: STS
      - dataset:
          config: en-tr
          name: MTEB STS17 (en-tr)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 64.76325252267235
          - type: cos_sim_spearman
            value: 63.32615095463905
          - type: euclidean_pearson
            value: 64.07920669155716
          - type: euclidean_spearman
            value: 61.21409893072176
          - type: manhattan_pearson
            value: 64.26308625680016
          - type: manhattan_spearman
            value: 61.2438185254079
        task:
          type: STS
      - dataset:
          config: es-en
          name: MTEB STS17 (es-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 75.82644463022595
          - type: cos_sim_spearman
            value: 76.50381269945073
          - type: euclidean_pearson
            value: 75.1328548315934
          - type: euclidean_spearman
            value: 75.63761139408453
          - type: manhattan_pearson
            value: 75.18610101241407
          - type: manhattan_spearman
            value: 75.30669266354164
        task:
          type: STS
      - dataset:
          config: es-es
          name: MTEB STS17 (es-es)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 87.49994164686832
          - type: cos_sim_spearman
            value: 86.73743986245549
          - type: euclidean_pearson
            value: 86.8272894387145
          - type: euclidean_spearman
            value: 85.97608491000507
          - type: manhattan_pearson
            value: 86.74960140396779
          - type: manhattan_spearman
            value: 85.79285984190273
        task:
          type: STS
      - dataset:
          config: fr-en
          name: MTEB STS17 (fr-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 79.58172210788469
          - type: cos_sim_spearman
            value: 80.17516468334607
          - type: euclidean_pearson
            value: 77.56537843470504
          - type: euclidean_spearman
            value: 77.57264627395521
          - type: manhattan_pearson
            value: 78.09703521695943
          - type: manhattan_spearman
            value: 78.15942760916954
        task:
          type: STS
      - dataset:
          config: it-en
          name: MTEB STS17 (it-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 79.7589932931751
          - type: cos_sim_spearman
            value: 80.15210089028162
          - type: euclidean_pearson
            value: 77.54135223516057
          - type: euclidean_spearman
            value: 77.52697996368764
          - type: manhattan_pearson
            value: 77.65734439572518
          - type: manhattan_spearman
            value: 77.77702992016121
        task:
          type: STS
      - dataset:
          config: nl-en
          name: MTEB STS17 (nl-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 79.16682365511267
          - type: cos_sim_spearman
            value: 79.25311267628506
          - type: euclidean_pearson
            value: 77.54882036762244
          - type: euclidean_spearman
            value: 77.33212935194827
          - type: manhattan_pearson
            value: 77.98405516064015
          - type: manhattan_spearman
            value: 77.85075717865719
        task:
          type: STS
      - dataset:
          config: en
          name: MTEB STS22 (en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 59.10473294775917
          - type: cos_sim_spearman
            value: 61.82780474476838
          - type: euclidean_pearson
            value: 45.885111672377256
          - type: euclidean_spearman
            value: 56.88306351932454
          - type: manhattan_pearson
            value: 46.101218127323186
          - type: manhattan_spearman
            value: 56.80953694186333
        task:
          type: STS
      - dataset:
          config: de
          name: MTEB STS22 (de)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 45.781923079584146
          - type: cos_sim_spearman
            value: 55.95098449691107
          - type: euclidean_pearson
            value: 25.4571031323205
          - type: euclidean_spearman
            value: 49.859978118078935
          - type: manhattan_pearson
            value: 25.624938455041384
          - type: manhattan_spearman
            value: 49.99546185049401
        task:
          type: STS
      - dataset:
          config: es
          name: MTEB STS22 (es)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 60.00618133997907
          - type: cos_sim_spearman
            value: 66.57896677718321
          - type: euclidean_pearson
            value: 42.60118466388821
          - type: euclidean_spearman
            value: 62.8210759715209
          - type: manhattan_pearson
            value: 42.63446860604094
          - type: manhattan_spearman
            value: 62.73803068925271
        task:
          type: STS
      - dataset:
          config: pl
          name: MTEB STS22 (pl)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 28.460759121626943
          - type: cos_sim_spearman
            value: 34.13459007469131
          - type: euclidean_pearson
            value: 6.0917739325525195
          - type: euclidean_spearman
            value: 27.9947262664867
          - type: manhattan_pearson
            value: 6.16877864169911
          - type: manhattan_spearman
            value: 28.00664163971514
        task:
          type: STS
      - dataset:
          config: tr
          name: MTEB STS22 (tr)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 57.42546621771696
          - type: cos_sim_spearman
            value: 63.699663168970474
          - type: euclidean_pearson
            value: 38.12085278789738
          - type: euclidean_spearman
            value: 58.12329140741536
          - type: manhattan_pearson
            value: 37.97364549443335
          - type: manhattan_spearman
            value: 57.81545502318733
        task:
          type: STS
      - dataset:
          config: ar
          name: MTEB STS22 (ar)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 46.82241380954213
          - type: cos_sim_spearman
            value: 57.86569456006391
          - type: euclidean_pearson
            value: 31.80480070178813
          - type: euclidean_spearman
            value: 52.484000620130104
          - type: manhattan_pearson
            value: 31.952708554646097
          - type: manhattan_spearman
            value: 52.8560972356195
        task:
          type: STS
      - dataset:
          config: ru
          name: MTEB STS22 (ru)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 52.00447170498087
          - type: cos_sim_spearman
            value: 60.664116225735164
          - type: euclidean_pearson
            value: 33.87382555421702
          - type: euclidean_spearman
            value: 55.74649067458667
          - type: manhattan_pearson
            value: 33.99117246759437
          - type: manhattan_spearman
            value: 55.98749034923899
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB STS22 (zh)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 58.06497233105448
          - type: cos_sim_spearman
            value: 65.62968801135676
          - type: euclidean_pearson
            value: 47.482076613243905
          - type: euclidean_spearman
            value: 62.65137791498299
          - type: manhattan_pearson
            value: 47.57052626104093
          - type: manhattan_spearman
            value: 62.436916516613294
        task:
          type: STS
      - dataset:
          config: fr
          name: MTEB STS22 (fr)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 70.49397298562575
          - type: cos_sim_spearman
            value: 74.79604041187868
          - type: euclidean_pearson
            value: 49.661891561317795
          - type: euclidean_spearman
            value: 70.31535537621006
          - type: manhattan_pearson
            value: 49.553715741850006
          - type: manhattan_spearman
            value: 70.24779344636806
        task:
          type: STS
      - dataset:
          config: de-en
          name: MTEB STS22 (de-en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 55.640574515348696
          - type: cos_sim_spearman
            value: 54.927959317689
          - type: euclidean_pearson
            value: 29.00139666967476
          - type: euclidean_spearman
            value: 41.86386566971605
          - type: manhattan_pearson
            value: 29.47411067730344
          - type: manhattan_spearman
            value: 42.337438424952786
        task:
          type: STS
      - dataset:
          config: es-en
          name: MTEB STS22 (es-en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 68.14095292259312
          - type: cos_sim_spearman
            value: 73.99017581234789
          - type: euclidean_pearson
            value: 46.46304297872084
          - type: euclidean_spearman
            value: 60.91834114800041
          - type: manhattan_pearson
            value: 47.07072666338692
          - type: manhattan_spearman
            value: 61.70415727977926
        task:
          type: STS
      - dataset:
          config: it
          name: MTEB STS22 (it)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 73.27184653359575
          - type: cos_sim_spearman
            value: 77.76070252418626
          - type: euclidean_pearson
            value: 62.30586577544778
          - type: euclidean_spearman
            value: 75.14246629110978
          - type: manhattan_pearson
            value: 62.328196884927046
          - type: manhattan_spearman
            value: 75.1282792981433
        task:
          type: STS
      - dataset:
          config: pl-en
          name: MTEB STS22 (pl-en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 71.59448528829957
          - type: cos_sim_spearman
            value: 70.37277734222123
          - type: euclidean_pearson
            value: 57.63145565721123
          - type: euclidean_spearman
            value: 66.10113048304427
          - type: manhattan_pearson
            value: 57.18897811586808
          - type: manhattan_spearman
            value: 66.5595511215901
        task:
          type: STS
      - dataset:
          config: zh-en
          name: MTEB STS22 (zh-en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 66.37520607720838
          - type: cos_sim_spearman
            value: 69.92282148997948
          - type: euclidean_pearson
            value: 40.55768770125291
          - type: euclidean_spearman
            value: 55.189128944669605
          - type: manhattan_pearson
            value: 41.03566433468883
          - type: manhattan_spearman
            value: 55.61251893174558
        task:
          type: STS
      - dataset:
          config: es-it
          name: MTEB STS22 (es-it)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 57.791929533771835
          - type: cos_sim_spearman
            value: 66.45819707662093
          - type: euclidean_pearson
            value: 39.03686018511092
          - type: euclidean_spearman
            value: 56.01282695640428
          - type: manhattan_pearson
            value: 38.91586623619632
          - type: manhattan_spearman
            value: 56.69394943612747
        task:
          type: STS
      - dataset:
          config: de-fr
          name: MTEB STS22 (de-fr)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 47.82224468473866
          - type: cos_sim_spearman
            value: 59.467307194781164
          - type: euclidean_pearson
            value: 27.428459190256145
          - type: euclidean_spearman
            value: 60.83463107397519
          - type: manhattan_pearson
            value: 27.487391578496638
          - type: manhattan_spearman
            value: 61.281380460246496
        task:
          type: STS
      - dataset:
          config: de-pl
          name: MTEB STS22 (de-pl)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 16.306666792752644
          - type: cos_sim_spearman
            value: 39.35486427252405
          - type: euclidean_pearson
            value: -2.7887154897955435
          - type: euclidean_spearman
            value: 27.1296051831719
          - type: manhattan_pearson
            value: -3.202291270581297
          - type: manhattan_spearman
            value: 26.32895849218158
        task:
          type: STS
      - dataset:
          config: fr-pl
          name: MTEB STS22 (fr-pl)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 59.67006803805076
          - type: cos_sim_spearman
            value: 73.24670207647144
          - type: euclidean_pearson
            value: 46.91884681500483
          - type: euclidean_spearman
            value: 16.903085094570333
          - type: manhattan_pearson
            value: 46.88391675325812
          - type: manhattan_spearman
            value: 28.17180849095055
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSBenchmark
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
          split: test
          type: mteb/stsbenchmark-sts
        metrics:
          - type: cos_sim_pearson
            value: 83.79555591223837
          - type: cos_sim_spearman
            value: 85.63658602085185
          - type: euclidean_pearson
            value: 85.22080894037671
          - type: euclidean_spearman
            value: 85.54113580167038
          - type: manhattan_pearson
            value: 85.1639505960118
          - type: manhattan_spearman
            value: 85.43502665436196
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SciDocsRR
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
          split: test
          type: mteb/scidocs-reranking
        metrics:
          - type: map
            value: 80.73900991689766
          - type: mrr
            value: 94.81624131133934
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SciFact
          revision: None
          split: test
          type: scifact
        metrics:
          - type: map_at_1
            value: 55.678000000000004
          - type: map_at_10
            value: 65.135
          - type: map_at_100
            value: 65.824
          - type: map_at_1000
            value: 65.852
          - type: map_at_3
            value: 62.736000000000004
          - type: map_at_5
            value: 64.411
          - type: mrr_at_1
            value: 58.333
          - type: mrr_at_10
            value: 66.5
          - type: mrr_at_100
            value: 67.053
          - type: mrr_at_1000
            value: 67.08
          - type: mrr_at_3
            value: 64.944
          - type: mrr_at_5
            value: 65.89399999999999
          - type: ndcg_at_1
            value: 58.333
          - type: ndcg_at_10
            value: 69.34700000000001
          - type: ndcg_at_100
            value: 72.32
          - type: ndcg_at_1000
            value: 73.014
          - type: ndcg_at_3
            value: 65.578
          - type: ndcg_at_5
            value: 67.738
          - type: precision_at_1
            value: 58.333
          - type: precision_at_10
            value: 9.033
          - type: precision_at_100
            value: 1.0670000000000002
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 25.444
          - type: precision_at_5
            value: 16.933
          - type: recall_at_1
            value: 55.678000000000004
          - type: recall_at_10
            value: 80.72200000000001
          - type: recall_at_100
            value: 93.93299999999999
          - type: recall_at_1000
            value: 99.333
          - type: recall_at_3
            value: 70.783
          - type: recall_at_5
            value: 75.978
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SprintDuplicateQuestions
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
          split: test
          type: mteb/sprintduplicatequestions-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 99.74653465346535
          - type: cos_sim_ap
            value: 93.01476369929063
          - type: cos_sim_f1
            value: 86.93009118541033
          - type: cos_sim_precision
            value: 88.09034907597535
          - type: cos_sim_recall
            value: 85.8
          - type: dot_accuracy
            value: 99.22970297029703
          - type: dot_ap
            value: 51.58725659485144
          - type: dot_f1
            value: 53.51351351351352
          - type: dot_precision
            value: 58.235294117647065
          - type: dot_recall
            value: 49.5
          - type: euclidean_accuracy
            value: 99.74356435643564
          - type: euclidean_ap
            value: 92.40332894384368
          - type: euclidean_f1
            value: 86.97838109602817
          - type: euclidean_precision
            value: 87.46208291203236
          - type: euclidean_recall
            value: 86.5
          - type: manhattan_accuracy
            value: 99.73069306930694
          - type: manhattan_ap
            value: 92.01320815721121
          - type: manhattan_f1
            value: 86.4135864135864
          - type: manhattan_precision
            value: 86.32734530938124
          - type: manhattan_recall
            value: 86.5
          - type: max_accuracy
            value: 99.74653465346535
          - type: max_ap
            value: 93.01476369929063
          - type: max_f1
            value: 86.97838109602817
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB StackExchangeClustering
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
          split: test
          type: mteb/stackexchange-clustering
        metrics:
          - type: v_measure
            value: 55.2660514302523
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackExchangeClusteringP2P
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
          split: test
          type: mteb/stackexchange-clustering-p2p
        metrics:
          - type: v_measure
            value: 30.4637783572547
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackOverflowDupQuestions
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
          split: test
          type: mteb/stackoverflowdupquestions-reranking
        metrics:
          - type: map
            value: 49.41377758357637
          - type: mrr
            value: 50.138451213818854
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SummEval
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
          split: test
          type: mteb/summeval
        metrics:
          - type: cos_sim_pearson
            value: 28.887846011166594
          - type: cos_sim_spearman
            value: 30.10823258355903
          - type: dot_pearson
            value: 12.888049550236385
          - type: dot_spearman
            value: 12.827495903098123
        task:
          type: Summarization
      - dataset:
          config: default
          name: MTEB TRECCOVID
          revision: None
          split: test
          type: trec-covid
        metrics:
          - type: map_at_1
            value: 0.21
          - type: map_at_10
            value: 1.667
          - type: map_at_100
            value: 9.15
          - type: map_at_1000
            value: 22.927
          - type: map_at_3
            value: 0.573
          - type: map_at_5
            value: 0.915
          - type: mrr_at_1
            value: 80
          - type: mrr_at_10
            value: 87.167
          - type: mrr_at_100
            value: 87.167
          - type: mrr_at_1000
            value: 87.167
          - type: mrr_at_3
            value: 85.667
          - type: mrr_at_5
            value: 87.167
          - type: ndcg_at_1
            value: 76
          - type: ndcg_at_10
            value: 69.757
          - type: ndcg_at_100
            value: 52.402
          - type: ndcg_at_1000
            value: 47.737
          - type: ndcg_at_3
            value: 71.866
          - type: ndcg_at_5
            value: 72.225
          - type: precision_at_1
            value: 80
          - type: precision_at_10
            value: 75
          - type: precision_at_100
            value: 53.959999999999994
          - type: precision_at_1000
            value: 21.568
          - type: precision_at_3
            value: 76.667
          - type: precision_at_5
            value: 78
          - type: recall_at_1
            value: 0.21
          - type: recall_at_10
            value: 1.9189999999999998
          - type: recall_at_100
            value: 12.589
          - type: recall_at_1000
            value: 45.312000000000005
          - type: recall_at_3
            value: 0.61
          - type: recall_at_5
            value: 1.019
        task:
          type: Retrieval
      - dataset:
          config: sqi-eng
          name: MTEB Tatoeba (sqi-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.10000000000001
          - type: f1
            value: 90.06
          - type: precision
            value: 89.17333333333333
          - type: recall
            value: 92.10000000000001
        task:
          type: BitextMining
      - dataset:
          config: fry-eng
          name: MTEB Tatoeba (fry-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 56.06936416184971
          - type: f1
            value: 50.87508028259473
          - type: precision
            value: 48.97398843930635
          - type: recall
            value: 56.06936416184971
        task:
          type: BitextMining
      - dataset:
          config: kur-eng
          name: MTEB Tatoeba (kur-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 57.3170731707317
          - type: f1
            value: 52.96080139372822
          - type: precision
            value: 51.67861124382864
          - type: recall
            value: 57.3170731707317
        task:
          type: BitextMining
      - dataset:
          config: tur-eng
          name: MTEB Tatoeba (tur-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.3
          - type: f1
            value: 92.67333333333333
          - type: precision
            value: 91.90833333333333
          - type: recall
            value: 94.3
        task:
          type: BitextMining
      - dataset:
          config: deu-eng
          name: MTEB Tatoeba (deu-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.7
          - type: f1
            value: 97.07333333333332
          - type: precision
            value: 96.79500000000002
          - type: recall
            value: 97.7
        task:
          type: BitextMining
      - dataset:
          config: nld-eng
          name: MTEB Tatoeba (nld-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.69999999999999
          - type: f1
            value: 93.2
          - type: precision
            value: 92.48333333333333
          - type: recall
            value: 94.69999999999999
        task:
          type: BitextMining
      - dataset:
          config: ron-eng
          name: MTEB Tatoeba (ron-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.9
          - type: f1
            value: 91.26666666666667
          - type: precision
            value: 90.59444444444445
          - type: recall
            value: 92.9
        task:
          type: BitextMining
      - dataset:
          config: ang-eng
          name: MTEB Tatoeba (ang-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 34.32835820895522
          - type: f1
            value: 29.074180380150533
          - type: precision
            value: 28.068207322920596
          - type: recall
            value: 34.32835820895522
        task:
          type: BitextMining
      - dataset:
          config: ido-eng
          name: MTEB Tatoeba (ido-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 78.5
          - type: f1
            value: 74.3945115995116
          - type: precision
            value: 72.82967843459222
          - type: recall
            value: 78.5
        task:
          type: BitextMining
      - dataset:
          config: jav-eng
          name: MTEB Tatoeba (jav-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 66.34146341463415
          - type: f1
            value: 61.2469400518181
          - type: precision
            value: 59.63977756660683
          - type: recall
            value: 66.34146341463415
        task:
          type: BitextMining
      - dataset:
          config: isl-eng
          name: MTEB Tatoeba (isl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 80.9
          - type: f1
            value: 76.90349206349207
          - type: precision
            value: 75.32921568627451
          - type: recall
            value: 80.9
        task:
          type: BitextMining
      - dataset:
          config: slv-eng
          name: MTEB Tatoeba (slv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 84.93317132442284
          - type: f1
            value: 81.92519105034295
          - type: precision
            value: 80.71283920615635
          - type: recall
            value: 84.93317132442284
        task:
          type: BitextMining
      - dataset:
          config: cym-eng
          name: MTEB Tatoeba (cym-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 71.1304347826087
          - type: f1
            value: 65.22394755003451
          - type: precision
            value: 62.912422360248435
          - type: recall
            value: 71.1304347826087
        task:
          type: BitextMining
      - dataset:
          config: kaz-eng
          name: MTEB Tatoeba (kaz-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 79.82608695652173
          - type: f1
            value: 75.55693581780538
          - type: precision
            value: 73.79420289855072
          - type: recall
            value: 79.82608695652173
        task:
          type: BitextMining
      - dataset:
          config: est-eng
          name: MTEB Tatoeba (est-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 74
          - type: f1
            value: 70.51022222222223
          - type: precision
            value: 69.29673599347512
          - type: recall
            value: 74
        task:
          type: BitextMining
      - dataset:
          config: heb-eng
          name: MTEB Tatoeba (heb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 78.7
          - type: f1
            value: 74.14238095238095
          - type: precision
            value: 72.27214285714285
          - type: recall
            value: 78.7
        task:
          type: BitextMining
      - dataset:
          config: gla-eng
          name: MTEB Tatoeba (gla-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 48.97466827503016
          - type: f1
            value: 43.080330405420874
          - type: precision
            value: 41.36505499593557
          - type: recall
            value: 48.97466827503016
        task:
          type: BitextMining
      - dataset:
          config: mar-eng
          name: MTEB Tatoeba (mar-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 89.60000000000001
          - type: f1
            value: 86.62333333333333
          - type: precision
            value: 85.225
          - type: recall
            value: 89.60000000000001
        task:
          type: BitextMining
      - dataset:
          config: lat-eng
          name: MTEB Tatoeba (lat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 45.2
          - type: f1
            value: 39.5761253006253
          - type: precision
            value: 37.991358436312
          - type: recall
            value: 45.2
        task:
          type: BitextMining
      - dataset:
          config: bel-eng
          name: MTEB Tatoeba (bel-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 89.5
          - type: f1
            value: 86.70333333333333
          - type: precision
            value: 85.53166666666667
          - type: recall
            value: 89.5
        task:
          type: BitextMining
      - dataset:
          config: pms-eng
          name: MTEB Tatoeba (pms-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 50.095238095238095
          - type: f1
            value: 44.60650460650461
          - type: precision
            value: 42.774116796477045
          - type: recall
            value: 50.095238095238095
        task:
          type: BitextMining
      - dataset:
          config: gle-eng
          name: MTEB Tatoeba (gle-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 63.4
          - type: f1
            value: 58.35967261904762
          - type: precision
            value: 56.54857142857143
          - type: recall
            value: 63.4
        task:
          type: BitextMining
      - dataset:
          config: pes-eng
          name: MTEB Tatoeba (pes-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 89.2
          - type: f1
            value: 87.075
          - type: precision
            value: 86.12095238095239
          - type: recall
            value: 89.2
        task:
          type: BitextMining
      - dataset:
          config: nob-eng
          name: MTEB Tatoeba (nob-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96.8
          - type: f1
            value: 95.90333333333334
          - type: precision
            value: 95.50833333333333
          - type: recall
            value: 96.8
        task:
          type: BitextMining
      - dataset:
          config: bul-eng
          name: MTEB Tatoeba (bul-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 90.9
          - type: f1
            value: 88.6288888888889
          - type: precision
            value: 87.61607142857142
          - type: recall
            value: 90.9
        task:
          type: BitextMining
      - dataset:
          config: cbk-eng
          name: MTEB Tatoeba (cbk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 65.2
          - type: f1
            value: 60.54377630539395
          - type: precision
            value: 58.89434482711381
          - type: recall
            value: 65.2
        task:
          type: BitextMining
      - dataset:
          config: hun-eng
          name: MTEB Tatoeba (hun-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 87
          - type: f1
            value: 84.32412698412699
          - type: precision
            value: 83.25527777777778
          - type: recall
            value: 87
        task:
          type: BitextMining
      - dataset:
          config: uig-eng
          name: MTEB Tatoeba (uig-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 68.7
          - type: f1
            value: 63.07883541295306
          - type: precision
            value: 61.06117424242426
          - type: recall
            value: 68.7
        task:
          type: BitextMining
      - dataset:
          config: rus-eng
          name: MTEB Tatoeba (rus-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.7
          - type: f1
            value: 91.78333333333335
          - type: precision
            value: 90.86666666666667
          - type: recall
            value: 93.7
        task:
          type: BitextMining
      - dataset:
          config: spa-eng
          name: MTEB Tatoeba (spa-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.7
          - type: f1
            value: 96.96666666666667
          - type: precision
            value: 96.61666666666667
          - type: recall
            value: 97.7
        task:
          type: BitextMining
      - dataset:
          config: hye-eng
          name: MTEB Tatoeba (hye-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 88.27493261455525
          - type: f1
            value: 85.90745732255168
          - type: precision
            value: 84.91389637616052
          - type: recall
            value: 88.27493261455525
        task:
          type: BitextMining
      - dataset:
          config: tel-eng
          name: MTEB Tatoeba (tel-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 90.5982905982906
          - type: f1
            value: 88.4900284900285
          - type: precision
            value: 87.57122507122507
          - type: recall
            value: 90.5982905982906
        task:
          type: BitextMining
      - dataset:
          config: afr-eng
          name: MTEB Tatoeba (afr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 89.5
          - type: f1
            value: 86.90769841269842
          - type: precision
            value: 85.80178571428571
          - type: recall
            value: 89.5
        task:
          type: BitextMining
      - dataset:
          config: mon-eng
          name: MTEB Tatoeba (mon-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 82.5
          - type: f1
            value: 78.36796536796538
          - type: precision
            value: 76.82196969696969
          - type: recall
            value: 82.5
        task:
          type: BitextMining
      - dataset:
          config: arz-eng
          name: MTEB Tatoeba (arz-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 71.48846960167715
          - type: f1
            value: 66.78771089148448
          - type: precision
            value: 64.98302885095339
          - type: recall
            value: 71.48846960167715
        task:
          type: BitextMining
      - dataset:
          config: hrv-eng
          name: MTEB Tatoeba (hrv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.1
          - type: f1
            value: 92.50333333333333
          - type: precision
            value: 91.77499999999999
          - type: recall
            value: 94.1
        task:
          type: BitextMining
      - dataset:
          config: nov-eng
          name: MTEB Tatoeba (nov-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 71.20622568093385
          - type: f1
            value: 66.83278891450098
          - type: precision
            value: 65.35065777283677
          - type: recall
            value: 71.20622568093385
        task:
          type: BitextMining
      - dataset:
          config: gsw-eng
          name: MTEB Tatoeba (gsw-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 48.717948717948715
          - type: f1
            value: 43.53146853146853
          - type: precision
            value: 42.04721204721204
          - type: recall
            value: 48.717948717948715
        task:
          type: BitextMining
      - dataset:
          config: nds-eng
          name: MTEB Tatoeba (nds-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 58.5
          - type: f1
            value: 53.8564991863928
          - type: precision
            value: 52.40329436122275
          - type: recall
            value: 58.5
        task:
          type: BitextMining
      - dataset:
          config: ukr-eng
          name: MTEB Tatoeba (ukr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 90.8
          - type: f1
            value: 88.29
          - type: precision
            value: 87.09166666666667
          - type: recall
            value: 90.8
        task:
          type: BitextMining
      - dataset:
          config: uzb-eng
          name: MTEB Tatoeba (uzb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 67.28971962616822
          - type: f1
            value: 62.63425307817832
          - type: precision
            value: 60.98065939771546
          - type: recall
            value: 67.28971962616822
        task:
          type: BitextMining
      - dataset:
          config: lit-eng
          name: MTEB Tatoeba (lit-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 78.7
          - type: f1
            value: 75.5264472455649
          - type: precision
            value: 74.38205086580086
          - type: recall
            value: 78.7
        task:
          type: BitextMining
      - dataset:
          config: ina-eng
          name: MTEB Tatoeba (ina-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 88.7
          - type: f1
            value: 86.10809523809525
          - type: precision
            value: 85.07602564102565
          - type: recall
            value: 88.7
        task:
          type: BitextMining
      - dataset:
          config: lfn-eng
          name: MTEB Tatoeba (lfn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 56.99999999999999
          - type: f1
            value: 52.85487521402737
          - type: precision
            value: 51.53985162713104
          - type: recall
            value: 56.99999999999999
        task:
          type: BitextMining
      - dataset:
          config: zsm-eng
          name: MTEB Tatoeba (zsm-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94
          - type: f1
            value: 92.45333333333333
          - type: precision
            value: 91.79166666666667
          - type: recall
            value: 94
        task:
          type: BitextMining
      - dataset:
          config: ita-eng
          name: MTEB Tatoeba (ita-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.30000000000001
          - type: f1
            value: 90.61333333333333
          - type: precision
            value: 89.83333333333331
          - type: recall
            value: 92.30000000000001
        task:
          type: BitextMining
      - dataset:
          config: cmn-eng
          name: MTEB Tatoeba (cmn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.69999999999999
          - type: f1
            value: 93.34555555555555
          - type: precision
            value: 92.75416666666668
          - type: recall
            value: 94.69999999999999
        task:
          type: BitextMining
      - dataset:
          config: lvs-eng
          name: MTEB Tatoeba (lvs-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 80.2
          - type: f1
            value: 76.6563035113035
          - type: precision
            value: 75.3014652014652
          - type: recall
            value: 80.2
        task:
          type: BitextMining
      - dataset:
          config: glg-eng
          name: MTEB Tatoeba (glg-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 84.7
          - type: f1
            value: 82.78689263765207
          - type: precision
            value: 82.06705086580087
          - type: recall
            value: 84.7
        task:
          type: BitextMining
      - dataset:
          config: ceb-eng
          name: MTEB Tatoeba (ceb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 50.33333333333333
          - type: f1
            value: 45.461523661523664
          - type: precision
            value: 43.93545574795575
          - type: recall
            value: 50.33333333333333
        task:
          type: BitextMining
      - dataset:
          config: bre-eng
          name: MTEB Tatoeba (bre-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 6.6000000000000005
          - type: f1
            value: 5.442121400446441
          - type: precision
            value: 5.146630385487529
          - type: recall
            value: 6.6000000000000005
        task:
          type: BitextMining
      - dataset:
          config: ben-eng
          name: MTEB Tatoeba (ben-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 85
          - type: f1
            value: 81.04666666666667
          - type: precision
            value: 79.25
          - type: recall
            value: 85
        task:
          type: BitextMining
      - dataset:
          config: swg-eng
          name: MTEB Tatoeba (swg-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 47.32142857142857
          - type: f1
            value: 42.333333333333336
          - type: precision
            value: 40.69196428571429
          - type: recall
            value: 47.32142857142857
        task:
          type: BitextMining
      - dataset:
          config: arq-eng
          name: MTEB Tatoeba (arq-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 30.735455543358945
          - type: f1
            value: 26.73616790022338
          - type: precision
            value: 25.397823220451283
          - type: recall
            value: 30.735455543358945
        task:
          type: BitextMining
      - dataset:
          config: kab-eng
          name: MTEB Tatoeba (kab-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 25.1
          - type: f1
            value: 21.975989896371022
          - type: precision
            value: 21.059885632257203
          - type: recall
            value: 25.1
        task:
          type: BitextMining
      - dataset:
          config: fra-eng
          name: MTEB Tatoeba (fra-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.3
          - type: f1
            value: 92.75666666666666
          - type: precision
            value: 92.06166666666665
          - type: recall
            value: 94.3
        task:
          type: BitextMining
      - dataset:
          config: por-eng
          name: MTEB Tatoeba (por-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.1
          - type: f1
            value: 92.74
          - type: precision
            value: 92.09166666666667
          - type: recall
            value: 94.1
        task:
          type: BitextMining
      - dataset:
          config: tat-eng
          name: MTEB Tatoeba (tat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 71.3
          - type: f1
            value: 66.922442002442
          - type: precision
            value: 65.38249567099568
          - type: recall
            value: 71.3
        task:
          type: BitextMining
      - dataset:
          config: oci-eng
          name: MTEB Tatoeba (oci-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 40.300000000000004
          - type: f1
            value: 35.78682789299971
          - type: precision
            value: 34.66425128716588
          - type: recall
            value: 40.300000000000004
        task:
          type: BitextMining
      - dataset:
          config: pol-eng
          name: MTEB Tatoeba (pol-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96
          - type: f1
            value: 94.82333333333334
          - type: precision
            value: 94.27833333333334
          - type: recall
            value: 96
        task:
          type: BitextMining
      - dataset:
          config: war-eng
          name: MTEB Tatoeba (war-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 51.1
          - type: f1
            value: 47.179074753133584
          - type: precision
            value: 46.06461044702424
          - type: recall
            value: 51.1
        task:
          type: BitextMining
      - dataset:
          config: aze-eng
          name: MTEB Tatoeba (aze-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 87.7
          - type: f1
            value: 84.71
          - type: precision
            value: 83.46166666666667
          - type: recall
            value: 87.7
        task:
          type: BitextMining
      - dataset:
          config: vie-eng
          name: MTEB Tatoeba (vie-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 95.8
          - type: f1
            value: 94.68333333333334
          - type: precision
            value: 94.13333333333334
          - type: recall
            value: 95.8
        task:
          type: BitextMining
      - dataset:
          config: nno-eng
          name: MTEB Tatoeba (nno-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 85.39999999999999
          - type: f1
            value: 82.5577380952381
          - type: precision
            value: 81.36833333333334
          - type: recall
            value: 85.39999999999999
        task:
          type: BitextMining
      - dataset:
          config: cha-eng
          name: MTEB Tatoeba (cha-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 21.16788321167883
          - type: f1
            value: 16.948865627297987
          - type: precision
            value: 15.971932568647897
          - type: recall
            value: 21.16788321167883
        task:
          type: BitextMining
      - dataset:
          config: mhr-eng
          name: MTEB Tatoeba (mhr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 6.9
          - type: f1
            value: 5.515526831658907
          - type: precision
            value: 5.141966366966367
          - type: recall
            value: 6.9
        task:
          type: BitextMining
      - dataset:
          config: dan-eng
          name: MTEB Tatoeba (dan-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.39666666666668
          - type: precision
            value: 90.58666666666667
          - type: recall
            value: 93.2
        task:
          type: BitextMining
      - dataset:
          config: ell-eng
          name: MTEB Tatoeba (ell-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.2
          - type: f1
            value: 89.95666666666666
          - type: precision
            value: 88.92833333333333
          - type: recall
            value: 92.2
        task:
          type: BitextMining
      - dataset:
          config: amh-eng
          name: MTEB Tatoeba (amh-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 79.76190476190477
          - type: f1
            value: 74.93386243386244
          - type: precision
            value: 73.11011904761904
          - type: recall
            value: 79.76190476190477
        task:
          type: BitextMining
      - dataset:
          config: pam-eng
          name: MTEB Tatoeba (pam-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 8.799999999999999
          - type: f1
            value: 6.921439712248537
          - type: precision
            value: 6.489885109680683
          - type: recall
            value: 8.799999999999999
        task:
          type: BitextMining
      - dataset:
          config: hsb-eng
          name: MTEB Tatoeba (hsb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 45.75569358178054
          - type: f1
            value: 40.34699501312631
          - type: precision
            value: 38.57886764719063
          - type: recall
            value: 45.75569358178054
        task:
          type: BitextMining
      - dataset:
          config: srp-eng
          name: MTEB Tatoeba (srp-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91.4
          - type: f1
            value: 89.08333333333333
          - type: precision
            value: 88.01666666666668
          - type: recall
            value: 91.4
        task:
          type: BitextMining
      - dataset:
          config: epo-eng
          name: MTEB Tatoeba (epo-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.60000000000001
          - type: f1
            value: 92.06690476190477
          - type: precision
            value: 91.45095238095239
          - type: recall
            value: 93.60000000000001
        task:
          type: BitextMining
      - dataset:
          config: kzj-eng
          name: MTEB Tatoeba (kzj-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 7.5
          - type: f1
            value: 6.200363129378736
          - type: precision
            value: 5.89115314822466
          - type: recall
            value: 7.5
        task:
          type: BitextMining
      - dataset:
          config: awa-eng
          name: MTEB Tatoeba (awa-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 73.59307359307358
          - type: f1
            value: 68.38933553219267
          - type: precision
            value: 66.62698412698413
          - type: recall
            value: 73.59307359307358
        task:
          type: BitextMining
      - dataset:
          config: fao-eng
          name: MTEB Tatoeba (fao-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 69.8473282442748
          - type: f1
            value: 64.72373682297346
          - type: precision
            value: 62.82834214131924
          - type: recall
            value: 69.8473282442748
        task:
          type: BitextMining
      - dataset:
          config: mal-eng
          name: MTEB Tatoeba (mal-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.5254730713246
          - type: f1
            value: 96.72489082969432
          - type: precision
            value: 96.33672974284326
          - type: recall
            value: 97.5254730713246
        task:
          type: BitextMining
      - dataset:
          config: ile-eng
          name: MTEB Tatoeba (ile-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 75.6
          - type: f1
            value: 72.42746031746033
          - type: precision
            value: 71.14036630036631
          - type: recall
            value: 75.6
        task:
          type: BitextMining
      - dataset:
          config: bos-eng
          name: MTEB Tatoeba (bos-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91.24293785310734
          - type: f1
            value: 88.86064030131826
          - type: precision
            value: 87.73540489642184
          - type: recall
            value: 91.24293785310734
        task:
          type: BitextMining
      - dataset:
          config: cor-eng
          name: MTEB Tatoeba (cor-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 6.2
          - type: f1
            value: 4.383083659794954
          - type: precision
            value: 4.027861324289673
          - type: recall
            value: 6.2
        task:
          type: BitextMining
      - dataset:
          config: cat-eng
          name: MTEB Tatoeba (cat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 86.8
          - type: f1
            value: 84.09428571428572
          - type: precision
            value: 83.00333333333333
          - type: recall
            value: 86.8
        task:
          type: BitextMining
      - dataset:
          config: eus-eng
          name: MTEB Tatoeba (eus-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 60.699999999999996
          - type: f1
            value: 56.1584972394755
          - type: precision
            value: 54.713456330903135
          - type: recall
            value: 60.699999999999996
        task:
          type: BitextMining
      - dataset:
          config: yue-eng
          name: MTEB Tatoeba (yue-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 84.2
          - type: f1
            value: 80.66190476190475
          - type: precision
            value: 79.19690476190476
          - type: recall
            value: 84.2
        task:
          type: BitextMining
      - dataset:
          config: swe-eng
          name: MTEB Tatoeba (swe-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.33
          - type: precision
            value: 90.45
          - type: recall
            value: 93.2
        task:
          type: BitextMining
      - dataset:
          config: dtp-eng
          name: MTEB Tatoeba (dtp-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 6.3
          - type: f1
            value: 5.126828976748276
          - type: precision
            value: 4.853614328966668
          - type: recall
            value: 6.3
        task:
          type: BitextMining
      - dataset:
          config: kat-eng
          name: MTEB Tatoeba (kat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 81.76943699731903
          - type: f1
            value: 77.82873739308057
          - type: precision
            value: 76.27622452019234
          - type: recall
            value: 81.76943699731903
        task:
          type: BitextMining
      - dataset:
          config: jpn-eng
          name: MTEB Tatoeba (jpn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.30000000000001
          - type: f1
            value: 90.29666666666665
          - type: precision
            value: 89.40333333333334
          - type: recall
            value: 92.30000000000001
        task:
          type: BitextMining
      - dataset:
          config: csb-eng
          name: MTEB Tatoeba (csb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 29.249011857707508
          - type: f1
            value: 24.561866096392947
          - type: precision
            value: 23.356583740215456
          - type: recall
            value: 29.249011857707508
        task:
          type: BitextMining
      - dataset:
          config: xho-eng
          name: MTEB Tatoeba (xho-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 77.46478873239437
          - type: f1
            value: 73.23943661971832
          - type: precision
            value: 71.66666666666667
          - type: recall
            value: 77.46478873239437
        task:
          type: BitextMining
      - dataset:
          config: orv-eng
          name: MTEB Tatoeba (orv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 20.35928143712575
          - type: f1
            value: 15.997867865075824
          - type: precision
            value: 14.882104658301346
          - type: recall
            value: 20.35928143712575
        task:
          type: BitextMining
      - dataset:
          config: ind-eng
          name: MTEB Tatoeba (ind-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.2
          - type: f1
            value: 90.25999999999999
          - type: precision
            value: 89.45333333333335
          - type: recall
            value: 92.2
        task:
          type: BitextMining
      - dataset:
          config: tuk-eng
          name: MTEB Tatoeba (tuk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 23.15270935960591
          - type: f1
            value: 19.65673625772148
          - type: precision
            value: 18.793705293464992
          - type: recall
            value: 23.15270935960591
        task:
          type: BitextMining
      - dataset:
          config: max-eng
          name: MTEB Tatoeba (max-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 59.154929577464785
          - type: f1
            value: 52.3868463305083
          - type: precision
            value: 50.14938113529662
          - type: recall
            value: 59.154929577464785
        task:
          type: BitextMining
      - dataset:
          config: swh-eng
          name: MTEB Tatoeba (swh-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 70.51282051282051
          - type: f1
            value: 66.8089133089133
          - type: precision
            value: 65.37645687645687
          - type: recall
            value: 70.51282051282051
        task:
          type: BitextMining
      - dataset:
          config: hin-eng
          name: MTEB Tatoeba (hin-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.6
          - type: f1
            value: 93
          - type: precision
            value: 92.23333333333333
          - type: recall
            value: 94.6
        task:
          type: BitextMining
      - dataset:
          config: dsb-eng
          name: MTEB Tatoeba (dsb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 38.62212943632568
          - type: f1
            value: 34.3278276962583
          - type: precision
            value: 33.07646935732408
          - type: recall
            value: 38.62212943632568
        task:
          type: BitextMining
      - dataset:
          config: ber-eng
          name: MTEB Tatoeba (ber-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 28.1
          - type: f1
            value: 23.579609223054604
          - type: precision
            value: 22.39622774921555
          - type: recall
            value: 28.1
        task:
          type: BitextMining
      - dataset:
          config: tam-eng
          name: MTEB Tatoeba (tam-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 88.27361563517914
          - type: f1
            value: 85.12486427795874
          - type: precision
            value: 83.71335504885994
          - type: recall
            value: 88.27361563517914
        task:
          type: BitextMining
      - dataset:
          config: slk-eng
          name: MTEB Tatoeba (slk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 88.6
          - type: f1
            value: 86.39928571428571
          - type: precision
            value: 85.4947557997558
          - type: recall
            value: 88.6
        task:
          type: BitextMining
      - dataset:
          config: tgl-eng
          name: MTEB Tatoeba (tgl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 86.5
          - type: f1
            value: 83.77952380952381
          - type: precision
            value: 82.67602564102565
          - type: recall
            value: 86.5
        task:
          type: BitextMining
      - dataset:
          config: ast-eng
          name: MTEB Tatoeba (ast-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 79.52755905511812
          - type: f1
            value: 75.3055868016498
          - type: precision
            value: 73.81889763779527
          - type: recall
            value: 79.52755905511812
        task:
          type: BitextMining
      - dataset:
          config: mkd-eng
          name: MTEB Tatoeba (mkd-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 77.9
          - type: f1
            value: 73.76261904761905
          - type: precision
            value: 72.11670995670995
          - type: recall
            value: 77.9
        task:
          type: BitextMining
      - dataset:
          config: khm-eng
          name: MTEB Tatoeba (khm-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 53.8781163434903
          - type: f1
            value: 47.25804051288816
          - type: precision
            value: 45.0603482390186
          - type: recall
            value: 53.8781163434903
        task:
          type: BitextMining
      - dataset:
          config: ces-eng
          name: MTEB Tatoeba (ces-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91.10000000000001
          - type: f1
            value: 88.88
          - type: precision
            value: 87.96333333333334
          - type: recall
            value: 91.10000000000001
        task:
          type: BitextMining
      - dataset:
          config: tzl-eng
          name: MTEB Tatoeba (tzl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 38.46153846153847
          - type: f1
            value: 34.43978243978244
          - type: precision
            value: 33.429487179487175
          - type: recall
            value: 38.46153846153847
        task:
          type: BitextMining
      - dataset:
          config: urd-eng
          name: MTEB Tatoeba (urd-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 88.9
          - type: f1
            value: 86.19888888888887
          - type: precision
            value: 85.07440476190476
          - type: recall
            value: 88.9
        task:
          type: BitextMining
      - dataset:
          config: ara-eng
          name: MTEB Tatoeba (ara-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 85.9
          - type: f1
            value: 82.58857142857143
          - type: precision
            value: 81.15666666666667
          - type: recall
            value: 85.9
        task:
          type: BitextMining
      - dataset:
          config: kor-eng
          name: MTEB Tatoeba (kor-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 86.8
          - type: f1
            value: 83.36999999999999
          - type: precision
            value: 81.86833333333333
          - type: recall
            value: 86.8
        task:
          type: BitextMining
      - dataset:
          config: yid-eng
          name: MTEB Tatoeba (yid-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 68.51415094339622
          - type: f1
            value: 63.195000099481234
          - type: precision
            value: 61.394033442972116
          - type: recall
            value: 68.51415094339622
        task:
          type: BitextMining
      - dataset:
          config: fin-eng
          name: MTEB Tatoeba (fin-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 88.5
          - type: f1
            value: 86.14603174603175
          - type: precision
            value: 85.1162037037037
          - type: recall
            value: 88.5
        task:
          type: BitextMining
      - dataset:
          config: tha-eng
          name: MTEB Tatoeba (tha-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 95.62043795620438
          - type: f1
            value: 94.40389294403892
          - type: precision
            value: 93.7956204379562
          - type: recall
            value: 95.62043795620438
        task:
          type: BitextMining
      - dataset:
          config: wuu-eng
          name: MTEB Tatoeba (wuu-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 81.8
          - type: f1
            value: 78.6532178932179
          - type: precision
            value: 77.46348795840176
          - type: recall
            value: 81.8
        task:
          type: BitextMining
      - dataset:
          config: default
          name: MTEB Touche2020
          revision: None
          split: test
          type: webis-touche2020
        metrics:
          - type: map_at_1
            value: 2.603
          - type: map_at_10
            value: 8.5
          - type: map_at_100
            value: 12.985
          - type: map_at_1000
            value: 14.466999999999999
          - type: map_at_3
            value: 4.859999999999999
          - type: map_at_5
            value: 5.817
          - type: mrr_at_1
            value: 28.571
          - type: mrr_at_10
            value: 42.331
          - type: mrr_at_100
            value: 43.592999999999996
          - type: mrr_at_1000
            value: 43.592999999999996
          - type: mrr_at_3
            value: 38.435
          - type: mrr_at_5
            value: 39.966
          - type: ndcg_at_1
            value: 26.531
          - type: ndcg_at_10
            value: 21.353
          - type: ndcg_at_100
            value: 31.087999999999997
          - type: ndcg_at_1000
            value: 43.163000000000004
          - type: ndcg_at_3
            value: 22.999
          - type: ndcg_at_5
            value: 21.451
          - type: precision_at_1
            value: 28.571
          - type: precision_at_10
            value: 19.387999999999998
          - type: precision_at_100
            value: 6.265
          - type: precision_at_1000
            value: 1.4160000000000001
          - type: precision_at_3
            value: 24.490000000000002
          - type: precision_at_5
            value: 21.224
          - type: recall_at_1
            value: 2.603
          - type: recall_at_10
            value: 14.474
          - type: recall_at_100
            value: 40.287
          - type: recall_at_1000
            value: 76.606
          - type: recall_at_3
            value: 5.978
          - type: recall_at_5
            value: 7.819
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ToxicConversationsClassification
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
          split: test
          type: mteb/toxic_conversations_50k
        metrics:
          - type: accuracy
            value: 69.7848
          - type: ap
            value: 13.661023167088224
          - type: f1
            value: 53.61686134460943
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TweetSentimentExtractionClassification
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
          split: test
          type: mteb/tweet_sentiment_extraction
        metrics:
          - type: accuracy
            value: 61.28183361629882
          - type: f1
            value: 61.55481034919965
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TwentyNewsgroupsClustering
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
          split: test
          type: mteb/twentynewsgroups-clustering
        metrics:
          - type: v_measure
            value: 35.972128420092396
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB TwitterSemEval2015
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
          split: test
          type: mteb/twittersemeval2015-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 85.59933241938367
          - type: cos_sim_ap
            value: 72.20760361208136
          - type: cos_sim_f1
            value: 66.4447731755424
          - type: cos_sim_precision
            value: 62.35539102267469
          - type: cos_sim_recall
            value: 71.10817941952506
          - type: dot_accuracy
            value: 78.98313166835548
          - type: dot_ap
            value: 44.492521645493795
          - type: dot_f1
            value: 45.814889336016094
          - type: dot_precision
            value: 37.02439024390244
          - type: dot_recall
            value: 60.07915567282321
          - type: euclidean_accuracy
            value: 85.3907134767837
          - type: euclidean_ap
            value: 71.53847289080343
          - type: euclidean_f1
            value: 65.95952206778834
          - type: euclidean_precision
            value: 61.31006346328196
          - type: euclidean_recall
            value: 71.37203166226914
          - type: manhattan_accuracy
            value: 85.40859510043511
          - type: manhattan_ap
            value: 71.49664104395515
          - type: manhattan_f1
            value: 65.98569969356485
          - type: manhattan_precision
            value: 63.928748144482924
          - type: manhattan_recall
            value: 68.17941952506597
          - type: max_accuracy
            value: 85.59933241938367
          - type: max_ap
            value: 72.20760361208136
          - type: max_f1
            value: 66.4447731755424
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB TwitterURLCorpus
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
          split: test
          type: mteb/twitterurlcorpus-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 88.83261536073273
          - type: cos_sim_ap
            value: 85.48178133644264
          - type: cos_sim_f1
            value: 77.87816307403935
          - type: cos_sim_precision
            value: 75.88953021114926
          - type: cos_sim_recall
            value: 79.97382198952879
          - type: dot_accuracy
            value: 79.76287499514883
          - type: dot_ap
            value: 59.17438838475084
          - type: dot_f1
            value: 56.34566667855996
          - type: dot_precision
            value: 52.50349092359864
          - type: dot_recall
            value: 60.794579611949494
          - type: euclidean_accuracy
            value: 88.76857996662397
          - type: euclidean_ap
            value: 85.22764834359887
          - type: euclidean_f1
            value: 77.65379751543554
          - type: euclidean_precision
            value: 75.11152683839401
          - type: euclidean_recall
            value: 80.37419156144134
          - type: manhattan_accuracy
            value: 88.6987231730508
          - type: manhattan_ap
            value: 85.18907981724007
          - type: manhattan_f1
            value: 77.51967028849757
          - type: manhattan_precision
            value: 75.49992701795358
          - type: manhattan_recall
            value: 79.65044656606098
          - type: max_accuracy
            value: 88.83261536073273
          - type: max_ap
            value: 85.48178133644264
          - type: max_f1
            value: 77.87816307403935
        task:
          type: PairClassification
tags:
  - mteb
  - sentence-similarity
  - onnx
  - teradata

See Disclaimer below


A Teradata Vantage compatible Embeddings Model

intfloat/multilingual-e5-base

Overview of this Model

An Embedding Model which maps text (sentence/ paragraphs) into a vector. The intfloat/multilingual-e5-base model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings.

  • 278.04M params (Sizes in ONNX format - "fp32": 1058.73MB, "int8": 265.5MB, "uint8": 265.5MB)
  • 514 maximum input tokens
  • 768 dimensions of output vector
  • Licence: mit. The released models can be used for commercial purposes free of charge.
  • Reference to Original Model: https://huggingface.co/intfloat/multilingual-e5-base

Quickstart: Deploying this Model in Teradata Vantage

We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion.

Note: Ensure you have access to a Teradata Database with BYOM 6.0 installed.

To get started, clone the pre-converted model directly from the Teradata HuggingFace repository.


import teradataml as tdml
import getpass
from huggingface_hub import hf_hub_download

model_name = "multilingual-e5-base"
number_dimensions_output = 768
model_file_name = "model.onnx"

# Step 1: Download Model from Teradata HuggingFace Page

hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./")
hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./")

# Step 2: Create Connection to Vantage

tdml.create_context(host = input('enter your hostname'), 
                    username=input('enter your username'), 
                    password = getpass.getpass("enter your password"))

# Step 3: Load Models into Vantage
# a) Embedding model
tdml.save_byom(model_id = model_name, # must be unique in the models table
               model_file = f"onnx/{model_file_name}",
               table_name = 'embeddings_models' )
# b) Tokenizer
tdml.save_byom(model_id = model_name, # must be unique in the models table
              model_file = 'tokenizer.json',
              table_name = 'embeddings_tokenizers') 

# Step 4: Test ONNXEmbeddings Function
# Note that ONNXEmbeddings expects the 'payload' column to be 'txt'. 
# If it has got a different name, just rename it in a subquery/CTE.
input_table = "emails.emails"
embeddings_query = f"""
SELECT 
        *
from mldb.ONNXEmbeddings(
        on {input_table} as InputTable
        on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION
        on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION
        using
            Accumulate('id', 'txt') 
            ModelOutputTensor('sentence_embedding')
            EnableMemoryCheck('false')
            OutputFormat('FLOAT32({number_dimensions_output})')
            OverwriteCachedModel('true')
    ) a 
"""
DF_embeddings = tdml.DataFrame.from_query(embeddings_query)
DF_embeddings

What Can I Do with the Embeddings?

Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples:

Deep Dive into Model Conversion to ONNX

The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.

You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format.

Part 1. Importing and Converting Model using optimum

We start by importing the pre-trained intfloat/multilingual-e5-base model from Hugging Face.

To enhance performance and ensure compatibility with various execution environments, we'll use the Optimum utility to convert the model into the ONNX (Open Neural Network Exchange) format.

After conversion to ONNX, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage

We are generating ONNX files for multiple different precisions: fp32, int8, uint8

You can find the detailed conversion steps in the file convert.py

Part 2. Running the model in Python with onnxruntime & compare results

Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results.

If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database.

import onnxruntime as rt

from sentence_transformers.util import cos_sim
from sentence_transformers import SentenceTransformer

import transformers


sentences_1 = 'How is the weather today?'
sentences_2 = 'What is the current weather like today?'

# Calculate ONNX result
tokenizer = transformers.AutoTokenizer.from_pretrained("intfloat/multilingual-e5-base")
predef_sess = rt.InferenceSession("onnx/model.onnx")

enc1 = tokenizer(sentences_1)
embeddings_1_onnx = predef_sess.run(None,     {"input_ids": [enc1.input_ids], 
     "attention_mask": [enc1.attention_mask]})

enc2 = tokenizer(sentences_2)
embeddings_2_onnx = predef_sess.run(None,     {"input_ids": [enc2.input_ids], 
     "attention_mask": [enc2.attention_mask]})


# Calculate embeddings with SentenceTransformer
model = SentenceTransformer(model_id, trust_remote_code=True)
embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True)
embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True)

# Compare results
print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0])))
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))

You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file test_local.py


DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata.

To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations.

While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws.

You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.