language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
model-index:
- name: multilingual-e5-base
results:
- dataset:
config: en
name: MTEB AmazonCounterfactualClassification (en)
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: test
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 78.97014925373135
- type: ap
value: 43.69351129103008
- type: f1
value: 73.38075030070492
task:
type: Classification
- dataset:
config: de
name: MTEB AmazonCounterfactualClassification (de)
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: test
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 71.7237687366167
- type: ap
value: 82.22089859962671
- type: f1
value: 69.95532758884401
task:
type: Classification
- dataset:
config: en-ext
name: MTEB AmazonCounterfactualClassification (en-ext)
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: test
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 79.65517241379312
- type: ap
value: 28.507918657094738
- type: f1
value: 66.84516013726119
task:
type: Classification
- dataset:
config: ja
name: MTEB AmazonCounterfactualClassification (ja)
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: test
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 73.32976445396146
- type: ap
value: 20.720481637566014
- type: f1
value: 59.78002763416003
task:
type: Classification
- dataset:
config: default
name: MTEB AmazonPolarityClassification
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
split: test
type: mteb/amazon_polarity
metrics:
- type: accuracy
value: 90.63775
- type: ap
value: 87.22277903861716
- type: f1
value: 90.60378636386807
task:
type: Classification
- dataset:
config: en
name: MTEB AmazonReviewsClassification (en)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 44.546
- type: f1
value: 44.05666638370923
task:
type: Classification
- dataset:
config: de
name: MTEB AmazonReviewsClassification (de)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 41.828
- type: f1
value: 41.2710255644252
task:
type: Classification
- dataset:
config: es
name: MTEB AmazonReviewsClassification (es)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 40.534
- type: f1
value: 39.820743174270326
task:
type: Classification
- dataset:
config: fr
name: MTEB AmazonReviewsClassification (fr)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 39.684
- type: f1
value: 39.11052682815307
task:
type: Classification
- dataset:
config: ja
name: MTEB AmazonReviewsClassification (ja)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 37.436
- type: f1
value: 37.07082931930871
task:
type: Classification
- dataset:
config: zh
name: MTEB AmazonReviewsClassification (zh)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 37.226000000000006
- type: f1
value: 36.65372077739185
task:
type: Classification
- dataset:
config: default
name: MTEB ArguAna
revision: None
split: test
type: arguana
metrics:
- type: map_at_1
value: 22.831000000000003
- type: map_at_10
value: 36.42
- type: map_at_100
value: 37.699
- type: map_at_1000
value: 37.724000000000004
- type: map_at_3
value: 32.207
- type: map_at_5
value: 34.312
- type: mrr_at_1
value: 23.257
- type: mrr_at_10
value: 36.574
- type: mrr_at_100
value: 37.854
- type: mrr_at_1000
value: 37.878
- type: mrr_at_3
value: 32.385000000000005
- type: mrr_at_5
value: 34.48
- type: ndcg_at_1
value: 22.831000000000003
- type: ndcg_at_10
value: 44.230000000000004
- type: ndcg_at_100
value: 49.974000000000004
- type: ndcg_at_1000
value: 50.522999999999996
- type: ndcg_at_3
value: 35.363
- type: ndcg_at_5
value: 39.164
- type: precision_at_1
value: 22.831000000000003
- type: precision_at_10
value: 6.935
- type: precision_at_100
value: 0.9520000000000001
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 14.841
- type: precision_at_5
value: 10.754
- type: recall_at_1
value: 22.831000000000003
- type: recall_at_10
value: 69.346
- type: recall_at_100
value: 95.235
- type: recall_at_1000
value: 99.36
- type: recall_at_3
value: 44.523
- type: recall_at_5
value: 53.769999999999996
task:
type: Retrieval
- dataset:
config: default
name: MTEB ArxivClusteringP2P
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
split: test
type: mteb/arxiv-clustering-p2p
metrics:
- type: v_measure
value: 40.27789869854063
task:
type: Clustering
- dataset:
config: default
name: MTEB ArxivClusteringS2S
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
split: test
type: mteb/arxiv-clustering-s2s
metrics:
- type: v_measure
value: 35.41979463347428
task:
type: Clustering
- dataset:
config: default
name: MTEB AskUbuntuDupQuestions
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
split: test
type: mteb/askubuntudupquestions-reranking
metrics:
- type: map
value: 58.22752045109304
- type: mrr
value: 71.51112430198303
task:
type: Reranking
- dataset:
config: default
name: MTEB BIOSSES
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
split: test
type: mteb/biosses-sts
metrics:
- type: cos_sim_pearson
value: 84.71147646622866
- type: cos_sim_spearman
value: 85.059167046486
- type: euclidean_pearson
value: 75.88421613600647
- type: euclidean_spearman
value: 75.12821787150585
- type: manhattan_pearson
value: 75.22005646957604
- type: manhattan_spearman
value: 74.42880434453272
task:
type: STS
- dataset:
config: de-en
name: MTEB BUCC (de-en)
revision: d51519689f32196a32af33b075a01d0e7c51e252
split: test
type: mteb/bucc-bitext-mining
metrics:
- type: accuracy
value: 99.23799582463465
- type: f1
value: 99.12665274878218
- type: precision
value: 99.07098121085595
- type: recall
value: 99.23799582463465
task:
type: BitextMining
- dataset:
config: fr-en
name: MTEB BUCC (fr-en)
revision: d51519689f32196a32af33b075a01d0e7c51e252
split: test
type: mteb/bucc-bitext-mining
metrics:
- type: accuracy
value: 97.88685890380806
- type: f1
value: 97.59336708489249
- type: precision
value: 97.44662117543473
- type: recall
value: 97.88685890380806
task:
type: BitextMining
- dataset:
config: ru-en
name: MTEB BUCC (ru-en)
revision: d51519689f32196a32af33b075a01d0e7c51e252
split: test
type: mteb/bucc-bitext-mining
metrics:
- type: accuracy
value: 97.47142362313821
- type: f1
value: 97.1989377670015
- type: precision
value: 97.06384944001847
- type: recall
value: 97.47142362313821
task:
type: BitextMining
- dataset:
config: zh-en
name: MTEB BUCC (zh-en)
revision: d51519689f32196a32af33b075a01d0e7c51e252
split: test
type: mteb/bucc-bitext-mining
metrics:
- type: accuracy
value: 98.4728804634018
- type: f1
value: 98.2973494821836
- type: precision
value: 98.2095839915745
- type: recall
value: 98.4728804634018
task:
type: BitextMining
- dataset:
config: default
name: MTEB Banking77Classification
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
split: test
type: mteb/banking77
metrics:
- type: accuracy
value: 82.74025974025975
- type: f1
value: 82.67420447730439
task:
type: Classification
- dataset:
config: default
name: MTEB BiorxivClusteringP2P
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
split: test
type: mteb/biorxiv-clustering-p2p
metrics:
- type: v_measure
value: 35.0380848063507
task:
type: Clustering
- dataset:
config: default
name: MTEB BiorxivClusteringS2S
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
split: test
type: mteb/biorxiv-clustering-s2s
metrics:
- type: v_measure
value: 29.45956405670166
task:
type: Clustering
- dataset:
config: default
name: MTEB CQADupstackAndroidRetrieval
revision: None
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 32.122
- type: map_at_10
value: 42.03
- type: map_at_100
value: 43.364000000000004
- type: map_at_1000
value: 43.474000000000004
- type: map_at_3
value: 38.804
- type: map_at_5
value: 40.585
- type: mrr_at_1
value: 39.914
- type: mrr_at_10
value: 48.227
- type: mrr_at_100
value: 49.018
- type: mrr_at_1000
value: 49.064
- type: mrr_at_3
value: 45.994
- type: mrr_at_5
value: 47.396
- type: ndcg_at_1
value: 39.914
- type: ndcg_at_10
value: 47.825
- type: ndcg_at_100
value: 52.852
- type: ndcg_at_1000
value: 54.891
- type: ndcg_at_3
value: 43.517
- type: ndcg_at_5
value: 45.493
- type: precision_at_1
value: 39.914
- type: precision_at_10
value: 8.956
- type: precision_at_100
value: 1.388
- type: precision_at_1000
value: 0.182
- type: precision_at_3
value: 20.791999999999998
- type: precision_at_5
value: 14.821000000000002
- type: recall_at_1
value: 32.122
- type: recall_at_10
value: 58.294999999999995
- type: recall_at_100
value: 79.726
- type: recall_at_1000
value: 93.099
- type: recall_at_3
value: 45.017
- type: recall_at_5
value: 51.002
- type: map_at_1
value: 29.677999999999997
- type: map_at_10
value: 38.684000000000005
- type: map_at_100
value: 39.812999999999995
- type: map_at_1000
value: 39.945
- type: map_at_3
value: 35.831
- type: map_at_5
value: 37.446
- type: mrr_at_1
value: 37.771
- type: mrr_at_10
value: 44.936
- type: mrr_at_100
value: 45.583
- type: mrr_at_1000
value: 45.634
- type: mrr_at_3
value: 42.771
- type: mrr_at_5
value: 43.994
- type: ndcg_at_1
value: 37.771
- type: ndcg_at_10
value: 44.059
- type: ndcg_at_100
value: 48.192
- type: ndcg_at_1000
value: 50.375
- type: ndcg_at_3
value: 40.172000000000004
- type: ndcg_at_5
value: 41.899
- type: precision_at_1
value: 37.771
- type: precision_at_10
value: 8.286999999999999
- type: precision_at_100
value: 1.322
- type: precision_at_1000
value: 0.178
- type: precision_at_3
value: 19.406000000000002
- type: precision_at_5
value: 13.745
- type: recall_at_1
value: 29.677999999999997
- type: recall_at_10
value: 53.071
- type: recall_at_100
value: 70.812
- type: recall_at_1000
value: 84.841
- type: recall_at_3
value: 41.016000000000005
- type: recall_at_5
value: 46.22
- type: map_at_1
value: 42.675000000000004
- type: map_at_10
value: 53.93599999999999
- type: map_at_100
value: 54.806999999999995
- type: map_at_1000
value: 54.867
- type: map_at_3
value: 50.934000000000005
- type: map_at_5
value: 52.583
- type: mrr_at_1
value: 48.339
- type: mrr_at_10
value: 57.265
- type: mrr_at_100
value: 57.873
- type: mrr_at_1000
value: 57.906
- type: mrr_at_3
value: 55.193000000000005
- type: mrr_at_5
value: 56.303000000000004
- type: ndcg_at_1
value: 48.339
- type: ndcg_at_10
value: 59.19799999999999
- type: ndcg_at_100
value: 62.743
- type: ndcg_at_1000
value: 63.99399999999999
- type: ndcg_at_3
value: 54.367
- type: ndcg_at_5
value: 56.548
- type: precision_at_1
value: 48.339
- type: precision_at_10
value: 9.216000000000001
- type: precision_at_100
value: 1.1809999999999998
- type: precision_at_1000
value: 0.134
- type: precision_at_3
value: 23.72
- type: precision_at_5
value: 16.025
- type: recall_at_1
value: 42.675000000000004
- type: recall_at_10
value: 71.437
- type: recall_at_100
value: 86.803
- type: recall_at_1000
value: 95.581
- type: recall_at_3
value: 58.434
- type: recall_at_5
value: 63.754
- type: map_at_1
value: 23.518
- type: map_at_10
value: 30.648999999999997
- type: map_at_100
value: 31.508999999999997
- type: map_at_1000
value: 31.604
- type: map_at_3
value: 28.247
- type: map_at_5
value: 29.65
- type: mrr_at_1
value: 25.650000000000002
- type: mrr_at_10
value: 32.771
- type: mrr_at_100
value: 33.554
- type: mrr_at_1000
value: 33.629999999999995
- type: mrr_at_3
value: 30.433
- type: mrr_at_5
value: 31.812
- type: ndcg_at_1
value: 25.650000000000002
- type: ndcg_at_10
value: 34.929
- type: ndcg_at_100
value: 39.382
- type: ndcg_at_1000
value: 41.913
- type: ndcg_at_3
value: 30.292
- type: ndcg_at_5
value: 32.629999999999995
- type: precision_at_1
value: 25.650000000000002
- type: precision_at_10
value: 5.311
- type: precision_at_100
value: 0.792
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 12.58
- type: precision_at_5
value: 8.994
- type: recall_at_1
value: 23.518
- type: recall_at_10
value: 46.19
- type: recall_at_100
value: 67.123
- type: recall_at_1000
value: 86.442
- type: recall_at_3
value: 33.678000000000004
- type: recall_at_5
value: 39.244
- type: map_at_1
value: 15.891
- type: map_at_10
value: 22.464000000000002
- type: map_at_100
value: 23.483
- type: map_at_1000
value: 23.613
- type: map_at_3
value: 20.080000000000002
- type: map_at_5
value: 21.526
- type: mrr_at_1
value: 20.025000000000002
- type: mrr_at_10
value: 26.712999999999997
- type: mrr_at_100
value: 27.650000000000002
- type: mrr_at_1000
value: 27.737000000000002
- type: mrr_at_3
value: 24.274
- type: mrr_at_5
value: 25.711000000000002
- type: ndcg_at_1
value: 20.025000000000002
- type: ndcg_at_10
value: 27.028999999999996
- type: ndcg_at_100
value: 32.064
- type: ndcg_at_1000
value: 35.188
- type: ndcg_at_3
value: 22.512999999999998
- type: ndcg_at_5
value: 24.89
- type: precision_at_1
value: 20.025000000000002
- type: precision_at_10
value: 4.776
- type: precision_at_100
value: 0.8500000000000001
- type: precision_at_1000
value: 0.125
- type: precision_at_3
value: 10.531
- type: precision_at_5
value: 7.811
- type: recall_at_1
value: 15.891
- type: recall_at_10
value: 37.261
- type: recall_at_100
value: 59.12
- type: recall_at_1000
value: 81.356
- type: recall_at_3
value: 24.741
- type: recall_at_5
value: 30.753999999999998
- type: map_at_1
value: 27.544
- type: map_at_10
value: 36.283
- type: map_at_100
value: 37.467
- type: map_at_1000
value: 37.574000000000005
- type: map_at_3
value: 33.528999999999996
- type: map_at_5
value: 35.028999999999996
- type: mrr_at_1
value: 34.166999999999994
- type: mrr_at_10
value: 41.866
- type: mrr_at_100
value: 42.666
- type: mrr_at_1000
value: 42.716
- type: mrr_at_3
value: 39.541
- type: mrr_at_5
value: 40.768
- type: ndcg_at_1
value: 34.166999999999994
- type: ndcg_at_10
value: 41.577
- type: ndcg_at_100
value: 46.687
- type: ndcg_at_1000
value: 48.967
- type: ndcg_at_3
value: 37.177
- type: ndcg_at_5
value: 39.097
- type: precision_at_1
value: 34.166999999999994
- type: precision_at_10
value: 7.420999999999999
- type: precision_at_100
value: 1.165
- type: precision_at_1000
value: 0.154
- type: precision_at_3
value: 17.291999999999998
- type: precision_at_5
value: 12.166
- type: recall_at_1
value: 27.544
- type: recall_at_10
value: 51.99399999999999
- type: recall_at_100
value: 73.738
- type: recall_at_1000
value: 89.33
- type: recall_at_3
value: 39.179
- type: recall_at_5
value: 44.385999999999996
- type: map_at_1
value: 26.661
- type: map_at_10
value: 35.475
- type: map_at_100
value: 36.626999999999995
- type: map_at_1000
value: 36.741
- type: map_at_3
value: 32.818000000000005
- type: map_at_5
value: 34.397
- type: mrr_at_1
value: 32.647999999999996
- type: mrr_at_10
value: 40.784
- type: mrr_at_100
value: 41.602
- type: mrr_at_1000
value: 41.661
- type: mrr_at_3
value: 38.68
- type: mrr_at_5
value: 39.838
- type: ndcg_at_1
value: 32.647999999999996
- type: ndcg_at_10
value: 40.697
- type: ndcg_at_100
value: 45.799
- type: ndcg_at_1000
value: 48.235
- type: ndcg_at_3
value: 36.516
- type: ndcg_at_5
value: 38.515
- type: precision_at_1
value: 32.647999999999996
- type: precision_at_10
value: 7.202999999999999
- type: precision_at_100
value: 1.1360000000000001
- type: precision_at_1000
value: 0.151
- type: precision_at_3
value: 17.314
- type: precision_at_5
value: 12.145999999999999
- type: recall_at_1
value: 26.661
- type: recall_at_10
value: 50.995000000000005
- type: recall_at_100
value: 73.065
- type: recall_at_1000
value: 89.781
- type: recall_at_3
value: 39.073
- type: recall_at_5
value: 44.395
- type: map_at_1
value: 25.946583333333333
- type: map_at_10
value: 33.79725
- type: map_at_100
value: 34.86408333333333
- type: map_at_1000
value: 34.9795
- type: map_at_3
value: 31.259999999999998
- type: map_at_5
value: 32.71541666666666
- type: mrr_at_1
value: 30.863749999999996
- type: mrr_at_10
value: 37.99183333333333
- type: mrr_at_100
value: 38.790499999999994
- type: mrr_at_1000
value: 38.85575000000001
- type: mrr_at_3
value: 35.82083333333333
- type: mrr_at_5
value: 37.07533333333333
- type: ndcg_at_1
value: 30.863749999999996
- type: ndcg_at_10
value: 38.52141666666667
- type: ndcg_at_100
value: 43.17966666666667
- type: ndcg_at_1000
value: 45.64608333333333
- type: ndcg_at_3
value: 34.333000000000006
- type: ndcg_at_5
value: 36.34975
- type: precision_at_1
value: 30.863749999999996
- type: precision_at_10
value: 6.598999999999999
- type: precision_at_100
value: 1.0502500000000001
- type: precision_at_1000
value: 0.14400000000000002
- type: precision_at_3
value: 15.557583333333334
- type: precision_at_5
value: 11.020000000000001
- type: recall_at_1
value: 25.946583333333333
- type: recall_at_10
value: 48.36991666666666
- type: recall_at_100
value: 69.02408333333334
- type: recall_at_1000
value: 86.43858333333331
- type: recall_at_3
value: 36.4965
- type: recall_at_5
value: 41.76258333333334
- type: map_at_1
value: 22.431
- type: map_at_10
value: 28.889
- type: map_at_100
value: 29.642000000000003
- type: map_at_1000
value: 29.742
- type: map_at_3
value: 26.998
- type: map_at_5
value: 28.172000000000004
- type: mrr_at_1
value: 25.307000000000002
- type: mrr_at_10
value: 31.763
- type: mrr_at_100
value: 32.443
- type: mrr_at_1000
value: 32.531
- type: mrr_at_3
value: 29.959000000000003
- type: mrr_at_5
value: 31.063000000000002
- type: ndcg_at_1
value: 25.307000000000002
- type: ndcg_at_10
value: 32.586999999999996
- type: ndcg_at_100
value: 36.5
- type: ndcg_at_1000
value: 39.133
- type: ndcg_at_3
value: 29.25
- type: ndcg_at_5
value: 31.023
- type: precision_at_1
value: 25.307000000000002
- type: precision_at_10
value: 4.954
- type: precision_at_100
value: 0.747
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 12.577
- type: precision_at_5
value: 8.741999999999999
- type: recall_at_1
value: 22.431
- type: recall_at_10
value: 41.134
- type: recall_at_100
value: 59.28600000000001
- type: recall_at_1000
value: 78.857
- type: recall_at_3
value: 31.926
- type: recall_at_5
value: 36.335
- type: map_at_1
value: 17.586
- type: map_at_10
value: 23.304
- type: map_at_100
value: 24.159
- type: map_at_1000
value: 24.281
- type: map_at_3
value: 21.316
- type: map_at_5
value: 22.383
- type: mrr_at_1
value: 21.645
- type: mrr_at_10
value: 27.365000000000002
- type: mrr_at_100
value: 28.108
- type: mrr_at_1000
value: 28.192
- type: mrr_at_3
value: 25.482
- type: mrr_at_5
value: 26.479999999999997
- type: ndcg_at_1
value: 21.645
- type: ndcg_at_10
value: 27.306
- type: ndcg_at_100
value: 31.496000000000002
- type: ndcg_at_1000
value: 34.53
- type: ndcg_at_3
value: 23.73
- type: ndcg_at_5
value: 25.294
- type: precision_at_1
value: 21.645
- type: precision_at_10
value: 4.797
- type: precision_at_100
value: 0.8059999999999999
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 10.850999999999999
- type: precision_at_5
value: 7.736
- type: recall_at_1
value: 17.586
- type: recall_at_10
value: 35.481
- type: recall_at_100
value: 54.534000000000006
- type: recall_at_1000
value: 76.456
- type: recall_at_3
value: 25.335
- type: recall_at_5
value: 29.473
- type: map_at_1
value: 25.095
- type: map_at_10
value: 32.374
- type: map_at_100
value: 33.537
- type: map_at_1000
value: 33.634
- type: map_at_3
value: 30.089
- type: map_at_5
value: 31.433
- type: mrr_at_1
value: 29.198
- type: mrr_at_10
value: 36.01
- type: mrr_at_100
value: 37.022
- type: mrr_at_1000
value: 37.083
- type: mrr_at_3
value: 33.94
- type: mrr_at_5
value: 35.148
- type: ndcg_at_1
value: 29.198
- type: ndcg_at_10
value: 36.729
- type: ndcg_at_100
value: 42.114000000000004
- type: ndcg_at_1000
value: 44.592
- type: ndcg_at_3
value: 32.644
- type: ndcg_at_5
value: 34.652
- type: precision_at_1
value: 29.198
- type: precision_at_10
value: 5.970000000000001
- type: precision_at_100
value: 0.967
- type: precision_at_1000
value: 0.129
- type: precision_at_3
value: 14.396999999999998
- type: precision_at_5
value: 10.093
- type: recall_at_1
value: 25.095
- type: recall_at_10
value: 46.392
- type: recall_at_100
value: 69.706
- type: recall_at_1000
value: 87.738
- type: recall_at_3
value: 35.303000000000004
- type: recall_at_5
value: 40.441
- type: map_at_1
value: 26.857999999999997
- type: map_at_10
value: 34.066
- type: map_at_100
value: 35.671
- type: map_at_1000
value: 35.881
- type: map_at_3
value: 31.304
- type: map_at_5
value: 32.885
- type: mrr_at_1
value: 32.411
- type: mrr_at_10
value: 38.987
- type: mrr_at_100
value: 39.894
- type: mrr_at_1000
value: 39.959
- type: mrr_at_3
value: 36.626999999999995
- type: mrr_at_5
value: 38.011
- type: ndcg_at_1
value: 32.411
- type: ndcg_at_10
value: 39.208
- type: ndcg_at_100
value: 44.626
- type: ndcg_at_1000
value: 47.43
- type: ndcg_at_3
value: 35.091
- type: ndcg_at_5
value: 37.119
- type: precision_at_1
value: 32.411
- type: precision_at_10
value: 7.51
- type: precision_at_100
value: 1.486
- type: precision_at_1000
value: 0.234
- type: precision_at_3
value: 16.14
- type: precision_at_5
value: 11.976
- type: recall_at_1
value: 26.857999999999997
- type: recall_at_10
value: 47.407
- type: recall_at_100
value: 72.236
- type: recall_at_1000
value: 90.77
- type: recall_at_3
value: 35.125
- type: recall_at_5
value: 40.522999999999996
- type: map_at_1
value: 21.3
- type: map_at_10
value: 27.412999999999997
- type: map_at_100
value: 28.29
- type: map_at_1000
value: 28.398
- type: map_at_3
value: 25.169999999999998
- type: map_at_5
value: 26.496
- type: mrr_at_1
value: 23.29
- type: mrr_at_10
value: 29.215000000000003
- type: mrr_at_100
value: 30.073
- type: mrr_at_1000
value: 30.156
- type: mrr_at_3
value: 26.956000000000003
- type: mrr_at_5
value: 28.38
- type: ndcg_at_1
value: 23.29
- type: ndcg_at_10
value: 31.113000000000003
- type: ndcg_at_100
value: 35.701
- type: ndcg_at_1000
value: 38.505
- type: ndcg_at_3
value: 26.727
- type: ndcg_at_5
value: 29.037000000000003
- type: precision_at_1
value: 23.29
- type: precision_at_10
value: 4.787
- type: precision_at_100
value: 0.763
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 11.091
- type: precision_at_5
value: 7.985
- type: recall_at_1
value: 21.3
- type: recall_at_10
value: 40.782000000000004
- type: recall_at_100
value: 62.13999999999999
- type: recall_at_1000
value: 83.012
- type: recall_at_3
value: 29.131
- type: recall_at_5
value: 34.624
task:
type: Retrieval
- dataset:
config: default
name: MTEB ClimateFEVER
revision: None
split: test
type: climate-fever
metrics:
- type: map_at_1
value: 9.631
- type: map_at_10
value: 16.634999999999998
- type: map_at_100
value: 18.23
- type: map_at_1000
value: 18.419
- type: map_at_3
value: 13.66
- type: map_at_5
value: 15.173
- type: mrr_at_1
value: 21.368000000000002
- type: mrr_at_10
value: 31.56
- type: mrr_at_100
value: 32.58
- type: mrr_at_1000
value: 32.633
- type: mrr_at_3
value: 28.241
- type: mrr_at_5
value: 30.225
- type: ndcg_at_1
value: 21.368000000000002
- type: ndcg_at_10
value: 23.855999999999998
- type: ndcg_at_100
value: 30.686999999999998
- type: ndcg_at_1000
value: 34.327000000000005
- type: ndcg_at_3
value: 18.781
- type: ndcg_at_5
value: 20.73
- type: precision_at_1
value: 21.368000000000002
- type: precision_at_10
value: 7.564
- type: precision_at_100
value: 1.496
- type: precision_at_1000
value: 0.217
- type: precision_at_3
value: 13.876
- type: precision_at_5
value: 11.062
- type: recall_at_1
value: 9.631
- type: recall_at_10
value: 29.517
- type: recall_at_100
value: 53.452
- type: recall_at_1000
value: 74.115
- type: recall_at_3
value: 17.605999999999998
- type: recall_at_5
value: 22.505
task:
type: Retrieval
- dataset:
config: default
name: MTEB DBPedia
revision: None
split: test
type: dbpedia-entity
metrics:
- type: map_at_1
value: 8.885
- type: map_at_10
value: 18.798000000000002
- type: map_at_100
value: 26.316
- type: map_at_1000
value: 27.869
- type: map_at_3
value: 13.719000000000001
- type: map_at_5
value: 15.716
- type: mrr_at_1
value: 66
- type: mrr_at_10
value: 74.263
- type: mrr_at_100
value: 74.519
- type: mrr_at_1000
value: 74.531
- type: mrr_at_3
value: 72.458
- type: mrr_at_5
value: 73.321
- type: ndcg_at_1
value: 53.87499999999999
- type: ndcg_at_10
value: 40.355999999999995
- type: ndcg_at_100
value: 44.366
- type: ndcg_at_1000
value: 51.771
- type: ndcg_at_3
value: 45.195
- type: ndcg_at_5
value: 42.187000000000005
- type: precision_at_1
value: 66
- type: precision_at_10
value: 31.75
- type: precision_at_100
value: 10.11
- type: precision_at_1000
value: 1.9800000000000002
- type: precision_at_3
value: 48.167
- type: precision_at_5
value: 40.050000000000004
- type: recall_at_1
value: 8.885
- type: recall_at_10
value: 24.471999999999998
- type: recall_at_100
value: 49.669000000000004
- type: recall_at_1000
value: 73.383
- type: recall_at_3
value: 14.872
- type: recall_at_5
value: 18.262999999999998
task:
type: Retrieval
- dataset:
config: default
name: MTEB EmotionClassification
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
split: test
type: mteb/emotion
metrics:
- type: accuracy
value: 45.18
- type: f1
value: 40.26878691789978
task:
type: Classification
- dataset:
config: default
name: MTEB FEVER
revision: None
split: test
type: fever
metrics:
- type: map_at_1
value: 62.751999999999995
- type: map_at_10
value: 74.131
- type: map_at_100
value: 74.407
- type: map_at_1000
value: 74.423
- type: map_at_3
value: 72.329
- type: map_at_5
value: 73.555
- type: mrr_at_1
value: 67.282
- type: mrr_at_10
value: 78.292
- type: mrr_at_100
value: 78.455
- type: mrr_at_1000
value: 78.458
- type: mrr_at_3
value: 76.755
- type: mrr_at_5
value: 77.839
- type: ndcg_at_1
value: 67.282
- type: ndcg_at_10
value: 79.443
- type: ndcg_at_100
value: 80.529
- type: ndcg_at_1000
value: 80.812
- type: ndcg_at_3
value: 76.281
- type: ndcg_at_5
value: 78.235
- type: precision_at_1
value: 67.282
- type: precision_at_10
value: 10.078
- type: precision_at_100
value: 1.082
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 30.178
- type: precision_at_5
value: 19.232
- type: recall_at_1
value: 62.751999999999995
- type: recall_at_10
value: 91.521
- type: recall_at_100
value: 95.997
- type: recall_at_1000
value: 97.775
- type: recall_at_3
value: 83.131
- type: recall_at_5
value: 87.93299999999999
task:
type: Retrieval
- dataset:
config: default
name: MTEB FiQA2018
revision: None
split: test
type: fiqa
metrics:
- type: map_at_1
value: 18.861
- type: map_at_10
value: 30.252000000000002
- type: map_at_100
value: 32.082
- type: map_at_1000
value: 32.261
- type: map_at_3
value: 25.909
- type: map_at_5
value: 28.296
- type: mrr_at_1
value: 37.346000000000004
- type: mrr_at_10
value: 45.802
- type: mrr_at_100
value: 46.611999999999995
- type: mrr_at_1000
value: 46.659
- type: mrr_at_3
value: 43.056
- type: mrr_at_5
value: 44.637
- type: ndcg_at_1
value: 37.346000000000004
- type: ndcg_at_10
value: 38.169
- type: ndcg_at_100
value: 44.864
- type: ndcg_at_1000
value: 47.974
- type: ndcg_at_3
value: 33.619
- type: ndcg_at_5
value: 35.317
- type: precision_at_1
value: 37.346000000000004
- type: precision_at_10
value: 10.693999999999999
- type: precision_at_100
value: 1.775
- type: precision_at_1000
value: 0.231
- type: precision_at_3
value: 22.325
- type: precision_at_5
value: 16.852
- type: recall_at_1
value: 18.861
- type: recall_at_10
value: 45.672000000000004
- type: recall_at_100
value: 70.60499999999999
- type: recall_at_1000
value: 89.216
- type: recall_at_3
value: 30.361
- type: recall_at_5
value: 36.998999999999995
task:
type: Retrieval
- dataset:
config: default
name: MTEB HotpotQA
revision: None
split: test
type: hotpotqa
metrics:
- type: map_at_1
value: 37.852999999999994
- type: map_at_10
value: 59.961
- type: map_at_100
value: 60.78
- type: map_at_1000
value: 60.843
- type: map_at_3
value: 56.39999999999999
- type: map_at_5
value: 58.646
- type: mrr_at_1
value: 75.70599999999999
- type: mrr_at_10
value: 82.321
- type: mrr_at_100
value: 82.516
- type: mrr_at_1000
value: 82.525
- type: mrr_at_3
value: 81.317
- type: mrr_at_5
value: 81.922
- type: ndcg_at_1
value: 75.70599999999999
- type: ndcg_at_10
value: 68.557
- type: ndcg_at_100
value: 71.485
- type: ndcg_at_1000
value: 72.71600000000001
- type: ndcg_at_3
value: 63.524
- type: ndcg_at_5
value: 66.338
- type: precision_at_1
value: 75.70599999999999
- type: precision_at_10
value: 14.463000000000001
- type: precision_at_100
value: 1.677
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 40.806
- type: precision_at_5
value: 26.709
- type: recall_at_1
value: 37.852999999999994
- type: recall_at_10
value: 72.316
- type: recall_at_100
value: 83.842
- type: recall_at_1000
value: 91.999
- type: recall_at_3
value: 61.209
- type: recall_at_5
value: 66.77199999999999
task:
type: Retrieval
- dataset:
config: default
name: MTEB ImdbClassification
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
split: test
type: mteb/imdb
metrics:
- type: accuracy
value: 85.46039999999999
- type: ap
value: 79.9812521351881
- type: f1
value: 85.31722909702084
task:
type: Classification
- dataset:
config: default
name: MTEB MSMARCO
revision: None
split: dev
type: msmarco
metrics:
- type: map_at_1
value: 22.704
- type: map_at_10
value: 35.329
- type: map_at_100
value: 36.494
- type: map_at_1000
value: 36.541000000000004
- type: map_at_3
value: 31.476
- type: map_at_5
value: 33.731
- type: mrr_at_1
value: 23.294999999999998
- type: mrr_at_10
value: 35.859
- type: mrr_at_100
value: 36.968
- type: mrr_at_1000
value: 37.008
- type: mrr_at_3
value: 32.085
- type: mrr_at_5
value: 34.299
- type: ndcg_at_1
value: 23.324
- type: ndcg_at_10
value: 42.274
- type: ndcg_at_100
value: 47.839999999999996
- type: ndcg_at_1000
value: 48.971
- type: ndcg_at_3
value: 34.454
- type: ndcg_at_5
value: 38.464
- type: precision_at_1
value: 23.324
- type: precision_at_10
value: 6.648
- type: precision_at_100
value: 0.9440000000000001
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.674999999999999
- type: precision_at_5
value: 10.850999999999999
- type: recall_at_1
value: 22.704
- type: recall_at_10
value: 63.660000000000004
- type: recall_at_100
value: 89.29899999999999
- type: recall_at_1000
value: 97.88900000000001
- type: recall_at_3
value: 42.441
- type: recall_at_5
value: 52.04
task:
type: Retrieval
- dataset:
config: en
name: MTEB MTOPDomainClassification (en)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 93.1326949384405
- type: f1
value: 92.89743579612082
task:
type: Classification
- dataset:
config: de
name: MTEB MTOPDomainClassification (de)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 89.62524654832347
- type: f1
value: 88.65106082263151
task:
type: Classification
- dataset:
config: es
name: MTEB MTOPDomainClassification (es)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 90.59039359573046
- type: f1
value: 90.31532892105662
task:
type: Classification
- dataset:
config: fr
name: MTEB MTOPDomainClassification (fr)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 86.21046038208581
- type: f1
value: 86.41459529813113
task:
type: Classification
- dataset:
config: hi
name: MTEB MTOPDomainClassification (hi)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 87.3180351380423
- type: f1
value: 86.71383078226444
task:
type: Classification
- dataset:
config: th
name: MTEB MTOPDomainClassification (th)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 86.24231464737792
- type: f1
value: 86.31845567592403
task:
type: Classification
- dataset:
config: en
name: MTEB MTOPIntentClassification (en)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 75.27131782945736
- type: f1
value: 57.52079940417103
task:
type: Classification
- dataset:
config: de
name: MTEB MTOPIntentClassification (de)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 71.2341504649197
- type: f1
value: 51.349951558039244
task:
type: Classification
- dataset:
config: es
name: MTEB MTOPIntentClassification (es)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 71.27418278852569
- type: f1
value: 50.1714985749095
task:
type: Classification
- dataset:
config: fr
name: MTEB MTOPIntentClassification (fr)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 67.68243031631694
- type: f1
value: 50.1066160836192
task:
type: Classification
- dataset:
config: hi
name: MTEB MTOPIntentClassification (hi)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 69.2362854069559
- type: f1
value: 48.821279948766424
task:
type: Classification
- dataset:
config: th
name: MTEB MTOPIntentClassification (th)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 71.71428571428571
- type: f1
value: 53.94611389496195
task:
type: Classification
- dataset:
config: af
name: MTEB MassiveIntentClassification (af)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 59.97646267652992
- type: f1
value: 57.26797883561521
task:
type: Classification
- dataset:
config: am
name: MTEB MassiveIntentClassification (am)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 53.65501008742435
- type: f1
value: 50.416258382177034
task:
type: Classification
- dataset:
config: ar
name: MTEB MassiveIntentClassification (ar)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 57.45796906523201
- type: f1
value: 53.306690547422185
task:
type: Classification
- dataset:
config: az
name: MTEB MassiveIntentClassification (az)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 62.59246805648957
- type: f1
value: 59.818381969051494
task:
type: Classification
- dataset:
config: bn
name: MTEB MassiveIntentClassification (bn)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 61.126429051782104
- type: f1
value: 58.25993593933026
task:
type: Classification
- dataset:
config: cy
name: MTEB MassiveIntentClassification (cy)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 50.057162071284466
- type: f1
value: 46.96095728790911
task:
type: Classification
- dataset:
config: da
name: MTEB MassiveIntentClassification (da)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 66.64425016812375
- type: f1
value: 62.858291698755764
task:
type: Classification
- dataset:
config: de
name: MTEB MassiveIntentClassification (de)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 66.08944182918628
- type: f1
value: 62.44639030604241
task:
type: Classification
- dataset:
config: el
name: MTEB MassiveIntentClassification (el)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 64.68056489576328
- type: f1
value: 61.775326758789504
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveIntentClassification (en)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 72.11163416274377
- type: f1
value: 69.70789096927015
task:
type: Classification
- dataset:
config: es
name: MTEB MassiveIntentClassification (es)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 68.40282447881641
- type: f1
value: 66.38492065671895
task:
type: Classification
- dataset:
config: fa
name: MTEB MassiveIntentClassification (fa)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 67.24613315400134
- type: f1
value: 64.3348019501336
task:
type: Classification
- dataset:
config: fi
name: MTEB MassiveIntentClassification (fi)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 65.78345662407531
- type: f1
value: 62.21279452354622
task:
type: Classification
- dataset:
config: fr
name: MTEB MassiveIntentClassification (fr)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 67.9455279085407
- type: f1
value: 65.48193124964094
task:
type: Classification
- dataset:
config: he
name: MTEB MassiveIntentClassification (he)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 62.05110961667788
- type: f1
value: 58.097856564684534
task:
type: Classification
- dataset:
config: hi
name: MTEB MassiveIntentClassification (hi)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 64.95292535305985
- type: f1
value: 62.09182174767901
task:
type: Classification
- dataset:
config: hu
name: MTEB MassiveIntentClassification (hu)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 64.97310020174848
- type: f1
value: 61.14252567730396
task:
type: Classification
- dataset:
config: hy
name: MTEB MassiveIntentClassification (hy)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 60.08069939475453
- type: f1
value: 57.044041742492034
task:
type: Classification
- dataset:
config: id
name: MTEB MassiveIntentClassification (id)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 66.63752521856085
- type: f1
value: 63.889340907205316
task:
type: Classification
- dataset:
config: is
name: MTEB MassiveIntentClassification (is)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 56.385339609952936
- type: f1
value: 53.449033750088304
task:
type: Classification
- dataset:
config: it
name: MTEB MassiveIntentClassification (it)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 68.93073301950234
- type: f1
value: 65.9884357824104
task:
type: Classification
- dataset:
config: ja
name: MTEB MassiveIntentClassification (ja)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 68.94418291862812
- type: f1
value: 66.48740222583132
task:
type: Classification
- dataset:
config: jv
name: MTEB MassiveIntentClassification (jv)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 54.26025554808339
- type: f1
value: 50.19562815100793
task:
type: Classification
- dataset:
config: ka
name: MTEB MassiveIntentClassification (ka)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 48.98789509078682
- type: f1
value: 46.65788438676836
task:
type: Classification
- dataset:
config: km
name: MTEB MassiveIntentClassification (km)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 44.68728984532616
- type: f1
value: 41.642419349541996
task:
type: Classification
- dataset:
config: kn
name: MTEB MassiveIntentClassification (kn)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 59.19300605245461
- type: f1
value: 55.8626492442437
task:
type: Classification
- dataset:
config: ko
name: MTEB MassiveIntentClassification (ko)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 66.33826496301278
- type: f1
value: 63.89499791648792
task:
type: Classification
- dataset:
config: lv
name: MTEB MassiveIntentClassification (lv)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 60.33960995292536
- type: f1
value: 57.15242464180892
task:
type: Classification
- dataset:
config: ml
name: MTEB MassiveIntentClassification (ml)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 63.09347679892402
- type: f1
value: 59.64733214063841
task:
type: Classification
- dataset:
config: mn
name: MTEB MassiveIntentClassification (mn)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 58.75924680564896
- type: f1
value: 55.96585692366827
task:
type: Classification
- dataset:
config: ms
name: MTEB MassiveIntentClassification (ms)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 62.48486886348352
- type: f1
value: 59.45143559032946
task:
type: Classification
- dataset:
config: my
name: MTEB MassiveIntentClassification (my)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 58.56422326832549
- type: f1
value: 54.96368702901926
task:
type: Classification
- dataset:
config: nb
name: MTEB MassiveIntentClassification (nb)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 66.18022864828512
- type: f1
value: 63.05369805040634
task:
type: Classification
- dataset:
config: nl
name: MTEB MassiveIntentClassification (nl)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 67.30329522528581
- type: f1
value: 64.06084612020727
task:
type: Classification
- dataset:
config: pl
name: MTEB MassiveIntentClassification (pl)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 68.36919973100201
- type: f1
value: 65.12154124788887
task:
type: Classification
- dataset:
config: pt
name: MTEB MassiveIntentClassification (pt)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 68.98117014122394
- type: f1
value: 66.41847559806962
task:
type: Classification
- dataset:
config: ro
name: MTEB MassiveIntentClassification (ro)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 65.53799596503026
- type: f1
value: 62.17067330740817
task:
type: Classification
- dataset:
config: ru
name: MTEB MassiveIntentClassification (ru)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 69.01815736381977
- type: f1
value: 66.24988369607843
task:
type: Classification
- dataset:
config: sl
name: MTEB MassiveIntentClassification (sl)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 62.34700739744452
- type: f1
value: 59.957933424941636
task:
type: Classification
- dataset:
config: sq
name: MTEB MassiveIntentClassification (sq)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 61.23402824478815
- type: f1
value: 57.98836976018471
task:
type: Classification
- dataset:
config: sv
name: MTEB MassiveIntentClassification (sv)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 68.54068594485541
- type: f1
value: 65.43849680666855
task:
type: Classification
- dataset:
config: sw
name: MTEB MassiveIntentClassification (sw)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 55.998655010087425
- type: f1
value: 52.83737515406804
task:
type: Classification
- dataset:
config: ta
name: MTEB MassiveIntentClassification (ta)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 58.71217215870882
- type: f1
value: 55.051794977833026
task:
type: Classification
- dataset:
config: te
name: MTEB MassiveIntentClassification (te)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 59.724277067921996
- type: f1
value: 56.33485571838306
task:
type: Classification
- dataset:
config: th
name: MTEB MassiveIntentClassification (th)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 65.59515803631473
- type: f1
value: 64.96772366193588
task:
type: Classification
- dataset:
config: tl
name: MTEB MassiveIntentClassification (tl)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 60.860793544048406
- type: f1
value: 58.148845819115394
task:
type: Classification
- dataset:
config: tr
name: MTEB MassiveIntentClassification (tr)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 67.40753194351043
- type: f1
value: 63.18903778054698
task:
type: Classification
- dataset:
config: ur
name: MTEB MassiveIntentClassification (ur)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 61.52320107599194
- type: f1
value: 58.356144563398516
task:
type: Classification
- dataset:
config: vi
name: MTEB MassiveIntentClassification (vi)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 66.17014122394083
- type: f1
value: 63.919964062638925
task:
type: Classification
- dataset:
config: zh-CN
name: MTEB MassiveIntentClassification (zh-CN)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 69.15601882985878
- type: f1
value: 67.01451905761371
task:
type: Classification
- dataset:
config: zh-TW
name: MTEB MassiveIntentClassification (zh-TW)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 64.65030262273034
- type: f1
value: 64.14420425129063
task:
type: Classification
- dataset:
config: af
name: MTEB MassiveScenarioClassification (af)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 65.08742434431743
- type: f1
value: 63.044060042311756
task:
type: Classification
- dataset:
config: am
name: MTEB MassiveScenarioClassification (am)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 58.52387357094821
- type: f1
value: 56.82398588814534
task:
type: Classification
- dataset:
config: ar
name: MTEB MassiveScenarioClassification (ar)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 62.239408204438476
- type: f1
value: 61.92570286170469
task:
type: Classification
- dataset:
config: az
name: MTEB MassiveScenarioClassification (az)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 63.74915938130463
- type: f1
value: 62.130740689396276
task:
type: Classification
- dataset:
config: bn
name: MTEB MassiveScenarioClassification (bn)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 65.00336247478144
- type: f1
value: 63.71080635228055
task:
type: Classification
- dataset:
config: cy
name: MTEB MassiveScenarioClassification (cy)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 52.837928715534645
- type: f1
value: 50.390741680320836
task:
type: Classification
- dataset:
config: da
name: MTEB MassiveScenarioClassification (da)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 72.42098184263618
- type: f1
value: 71.41355113538995
task:
type: Classification
- dataset:
config: de
name: MTEB MassiveScenarioClassification (de)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 71.95359784801613
- type: f1
value: 71.42699340156742
task:
type: Classification
- dataset:
config: el
name: MTEB MassiveScenarioClassification (el)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 70.18157363819772
- type: f1
value: 69.74836113037671
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveScenarioClassification (en)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 77.08137188971082
- type: f1
value: 76.78000685068261
task:
type: Classification
- dataset:
config: es
name: MTEB MassiveScenarioClassification (es)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 71.5030262273033
- type: f1
value: 71.71620130425673
task:
type: Classification
- dataset:
config: fa
name: MTEB MassiveScenarioClassification (fa)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 70.24546065904505
- type: f1
value: 69.07638311730359
task:
type: Classification
- dataset:
config: fi
name: MTEB MassiveScenarioClassification (fi)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 69.12911903160726
- type: f1
value: 68.32651736539815
task:
type: Classification
- dataset:
config: fr
name: MTEB MassiveScenarioClassification (fr)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 71.89307330195025
- type: f1
value: 71.33986549860187
task:
type: Classification
- dataset:
config: he
name: MTEB MassiveScenarioClassification (he)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 67.44451916610626
- type: f1
value: 66.90192664503866
task:
type: Classification
- dataset:
config: hi
name: MTEB MassiveScenarioClassification (hi)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 69.16274377942166
- type: f1
value: 68.01090953775066
task:
type: Classification
- dataset:
config: hu
name: MTEB MassiveScenarioClassification (hu)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 70.75319435104237
- type: f1
value: 70.18035309201403
task:
type: Classification
- dataset:
config: hy
name: MTEB MassiveScenarioClassification (hy)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 63.14391392064559
- type: f1
value: 61.48286540778145
task:
type: Classification
- dataset:
config: id
name: MTEB MassiveScenarioClassification (id)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 70.70275722932078
- type: f1
value: 70.26164779846495
task:
type: Classification
- dataset:
config: is
name: MTEB MassiveScenarioClassification (is)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 60.93813046402153
- type: f1
value: 58.8852862116525
task:
type: Classification
- dataset:
config: it
name: MTEB MassiveScenarioClassification (it)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 72.320107599193
- type: f1
value: 72.19836409602924
task:
type: Classification
- dataset:
config: ja
name: MTEB MassiveScenarioClassification (ja)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 74.65366509751176
- type: f1
value: 74.55188288799579
task:
type: Classification
- dataset:
config: jv
name: MTEB MassiveScenarioClassification (jv)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 59.694014794889036
- type: f1
value: 58.11353311721067
task:
type: Classification
- dataset:
config: ka
name: MTEB MassiveScenarioClassification (ka)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 54.37457969065231
- type: f1
value: 52.81306134311697
task:
type: Classification
- dataset:
config: km
name: MTEB MassiveScenarioClassification (km)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 48.3086751849361
- type: f1
value: 45.396449765419376
task:
type: Classification
- dataset:
config: kn
name: MTEB MassiveScenarioClassification (kn)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 62.151983860121064
- type: f1
value: 60.31762544281696
task:
type: Classification
- dataset:
config: ko
name: MTEB MassiveScenarioClassification (ko)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 72.44788164088769
- type: f1
value: 71.68150151736367
task:
type: Classification
- dataset:
config: lv
name: MTEB MassiveScenarioClassification (lv)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 62.81439139206455
- type: f1
value: 62.06735559105593
task:
type: Classification
- dataset:
config: ml
name: MTEB MassiveScenarioClassification (ml)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 68.04303967720242
- type: f1
value: 66.68298851670133
task:
type: Classification
- dataset:
config: mn
name: MTEB MassiveScenarioClassification (mn)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 61.43913920645595
- type: f1
value: 60.25605977560783
task:
type: Classification
- dataset:
config: ms
name: MTEB MassiveScenarioClassification (ms)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 66.90316072629456
- type: f1
value: 65.1325924692381
task:
type: Classification
- dataset:
config: my
name: MTEB MassiveScenarioClassification (my)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 61.63752521856086
- type: f1
value: 59.14284778039585
task:
type: Classification
- dataset:
config: nb
name: MTEB MassiveScenarioClassification (nb)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 71.63080026899797
- type: f1
value: 70.89771864626877
task:
type: Classification
- dataset:
config: nl
name: MTEB MassiveScenarioClassification (nl)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 72.10827168796234
- type: f1
value: 71.71954219691159
task:
type: Classification
- dataset:
config: pl
name: MTEB MassiveScenarioClassification (pl)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 70.59515803631471
- type: f1
value: 70.05040128099003
task:
type: Classification
- dataset:
config: pt
name: MTEB MassiveScenarioClassification (pt)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 70.83389374579691
- type: f1
value: 70.84877936562735
task:
type: Classification
- dataset:
config: ro
name: MTEB MassiveScenarioClassification (ro)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 69.18628110289173
- type: f1
value: 68.97232927921841
task:
type: Classification
- dataset:
config: ru
name: MTEB MassiveScenarioClassification (ru)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 72.99260255548083
- type: f1
value: 72.85139492157732
task:
type: Classification
- dataset:
config: sl
name: MTEB MassiveScenarioClassification (sl)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 65.26227303295225
- type: f1
value: 65.08833655469431
task:
type: Classification
- dataset:
config: sq
name: MTEB MassiveScenarioClassification (sq)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 66.48621385339611
- type: f1
value: 64.43483199071298
task:
type: Classification
- dataset:
config: sv
name: MTEB MassiveScenarioClassification (sv)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 73.14391392064559
- type: f1
value: 72.2580822579741
task:
type: Classification
- dataset:
config: sw
name: MTEB MassiveScenarioClassification (sw)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 59.88567585743107
- type: f1
value: 58.3073765932569
task:
type: Classification
- dataset:
config: ta
name: MTEB MassiveScenarioClassification (ta)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 62.38399462004034
- type: f1
value: 60.82139544252606
task:
type: Classification
- dataset:
config: te
name: MTEB MassiveScenarioClassification (te)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 62.58574310692671
- type: f1
value: 60.71443370385374
task:
type: Classification
- dataset:
config: th
name: MTEB MassiveScenarioClassification (th)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 71.61398789509079
- type: f1
value: 70.99761812049401
task:
type: Classification
- dataset:
config: tl
name: MTEB MassiveScenarioClassification (tl)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 62.73705447209146
- type: f1
value: 61.680849331794796
task:
type: Classification
- dataset:
config: tr
name: MTEB MassiveScenarioClassification (tr)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 71.66778749159381
- type: f1
value: 71.17320646080115
task:
type: Classification
- dataset:
config: ur
name: MTEB MassiveScenarioClassification (ur)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 64.640215198386
- type: f1
value: 63.301805157015444
task:
type: Classification
- dataset:
config: vi
name: MTEB MassiveScenarioClassification (vi)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 70.00672494956288
- type: f1
value: 70.26005548582106
task:
type: Classification
- dataset:
config: zh-CN
name: MTEB MassiveScenarioClassification (zh-CN)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 75.42030934767989
- type: f1
value: 75.2074842882598
task:
type: Classification
- dataset:
config: zh-TW
name: MTEB MassiveScenarioClassification (zh-TW)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 70.69266980497646
- type: f1
value: 70.94103167391192
task:
type: Classification
- dataset:
config: default
name: MTEB MedrxivClusteringP2P
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
split: test
type: mteb/medrxiv-clustering-p2p
metrics:
- type: v_measure
value: 28.91697191169135
task:
type: Clustering
- dataset:
config: default
name: MTEB MedrxivClusteringS2S
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
split: test
type: mteb/medrxiv-clustering-s2s
metrics:
- type: v_measure
value: 28.434000079573313
task:
type: Clustering
- dataset:
config: default
name: MTEB MindSmallReranking
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
split: test
type: mteb/mind_small
metrics:
- type: map
value: 30.96683513343383
- type: mrr
value: 31.967364078714834
task:
type: Reranking
- dataset:
config: default
name: MTEB NFCorpus
revision: None
split: test
type: nfcorpus
metrics:
- type: map_at_1
value: 5.5280000000000005
- type: map_at_10
value: 11.793
- type: map_at_100
value: 14.496999999999998
- type: map_at_1000
value: 15.783
- type: map_at_3
value: 8.838
- type: map_at_5
value: 10.07
- type: mrr_at_1
value: 43.653
- type: mrr_at_10
value: 51.531000000000006
- type: mrr_at_100
value: 52.205
- type: mrr_at_1000
value: 52.242999999999995
- type: mrr_at_3
value: 49.431999999999995
- type: mrr_at_5
value: 50.470000000000006
- type: ndcg_at_1
value: 42.415000000000006
- type: ndcg_at_10
value: 32.464999999999996
- type: ndcg_at_100
value: 28.927999999999997
- type: ndcg_at_1000
value: 37.629000000000005
- type: ndcg_at_3
value: 37.845
- type: ndcg_at_5
value: 35.147
- type: precision_at_1
value: 43.653
- type: precision_at_10
value: 23.932000000000002
- type: precision_at_100
value: 7.17
- type: precision_at_1000
value: 1.967
- type: precision_at_3
value: 35.397
- type: precision_at_5
value: 29.907
- type: recall_at_1
value: 5.5280000000000005
- type: recall_at_10
value: 15.568000000000001
- type: recall_at_100
value: 28.54
- type: recall_at_1000
value: 59.864
- type: recall_at_3
value: 9.822000000000001
- type: recall_at_5
value: 11.726
task:
type: Retrieval
- dataset:
config: default
name: MTEB NQ
revision: None
split: test
type: nq
metrics:
- type: map_at_1
value: 37.041000000000004
- type: map_at_10
value: 52.664
- type: map_at_100
value: 53.477
- type: map_at_1000
value: 53.505
- type: map_at_3
value: 48.510999999999996
- type: map_at_5
value: 51.036
- type: mrr_at_1
value: 41.338
- type: mrr_at_10
value: 55.071000000000005
- type: mrr_at_100
value: 55.672
- type: mrr_at_1000
value: 55.689
- type: mrr_at_3
value: 51.82
- type: mrr_at_5
value: 53.852
- type: ndcg_at_1
value: 41.338
- type: ndcg_at_10
value: 60.01800000000001
- type: ndcg_at_100
value: 63.409000000000006
- type: ndcg_at_1000
value: 64.017
- type: ndcg_at_3
value: 52.44799999999999
- type: ndcg_at_5
value: 56.571000000000005
- type: precision_at_1
value: 41.338
- type: precision_at_10
value: 9.531
- type: precision_at_100
value: 1.145
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 23.416
- type: precision_at_5
value: 16.46
- type: recall_at_1
value: 37.041000000000004
- type: recall_at_10
value: 79.76299999999999
- type: recall_at_100
value: 94.39
- type: recall_at_1000
value: 98.851
- type: recall_at_3
value: 60.465
- type: recall_at_5
value: 69.906
task:
type: Retrieval
- dataset:
config: default
name: MTEB QuoraRetrieval
revision: None
split: test
type: quora
metrics:
- type: map_at_1
value: 69.952
- type: map_at_10
value: 83.758
- type: map_at_100
value: 84.406
- type: map_at_1000
value: 84.425
- type: map_at_3
value: 80.839
- type: map_at_5
value: 82.646
- type: mrr_at_1
value: 80.62
- type: mrr_at_10
value: 86.947
- type: mrr_at_100
value: 87.063
- type: mrr_at_1000
value: 87.064
- type: mrr_at_3
value: 85.96000000000001
- type: mrr_at_5
value: 86.619
- type: ndcg_at_1
value: 80.63
- type: ndcg_at_10
value: 87.64800000000001
- type: ndcg_at_100
value: 88.929
- type: ndcg_at_1000
value: 89.054
- type: ndcg_at_3
value: 84.765
- type: ndcg_at_5
value: 86.291
- type: precision_at_1
value: 80.63
- type: precision_at_10
value: 13.314
- type: precision_at_100
value: 1.525
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.1
- type: precision_at_5
value: 24.372
- type: recall_at_1
value: 69.952
- type: recall_at_10
value: 94.955
- type: recall_at_100
value: 99.38
- type: recall_at_1000
value: 99.96000000000001
- type: recall_at_3
value: 86.60600000000001
- type: recall_at_5
value: 90.997
task:
type: Retrieval
- dataset:
config: default
name: MTEB RedditClustering
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
split: test
type: mteb/reddit-clustering
metrics:
- type: v_measure
value: 42.41329517878427
task:
type: Clustering
- dataset:
config: default
name: MTEB RedditClusteringP2P
revision: 282350215ef01743dc01b456c7f5241fa8937f16
split: test
type: mteb/reddit-clustering-p2p
metrics:
- type: v_measure
value: 55.171278362748666
task:
type: Clustering
- dataset:
config: default
name: MTEB SCIDOCS
revision: None
split: test
type: scidocs
metrics:
- type: map_at_1
value: 4.213
- type: map_at_10
value: 9.895
- type: map_at_100
value: 11.776
- type: map_at_1000
value: 12.084
- type: map_at_3
value: 7.2669999999999995
- type: map_at_5
value: 8.620999999999999
- type: mrr_at_1
value: 20.8
- type: mrr_at_10
value: 31.112000000000002
- type: mrr_at_100
value: 32.274
- type: mrr_at_1000
value: 32.35
- type: mrr_at_3
value: 28.133000000000003
- type: mrr_at_5
value: 29.892999999999997
- type: ndcg_at_1
value: 20.8
- type: ndcg_at_10
value: 17.163999999999998
- type: ndcg_at_100
value: 24.738
- type: ndcg_at_1000
value: 30.316
- type: ndcg_at_3
value: 16.665
- type: ndcg_at_5
value: 14.478
- type: precision_at_1
value: 20.8
- type: precision_at_10
value: 8.74
- type: precision_at_100
value: 1.963
- type: precision_at_1000
value: 0.33
- type: precision_at_3
value: 15.467
- type: precision_at_5
value: 12.6
- type: recall_at_1
value: 4.213
- type: recall_at_10
value: 17.698
- type: recall_at_100
value: 39.838
- type: recall_at_1000
value: 66.893
- type: recall_at_3
value: 9.418
- type: recall_at_5
value: 12.773000000000001
task:
type: Retrieval
- dataset:
config: default
name: MTEB SICK-R
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
split: test
type: mteb/sickr-sts
metrics:
- type: cos_sim_pearson
value: 82.90453315738294
- type: cos_sim_spearman
value: 78.51197850080254
- type: euclidean_pearson
value: 80.09647123597748
- type: euclidean_spearman
value: 78.63548011514061
- type: manhattan_pearson
value: 80.10645285675231
- type: manhattan_spearman
value: 78.57861806068901
task:
type: STS
- dataset:
config: default
name: MTEB STS12
revision: a0d554a64d88156834ff5ae9920b964011b16384
split: test
type: mteb/sts12-sts
metrics:
- type: cos_sim_pearson
value: 84.2616156846401
- type: cos_sim_spearman
value: 76.69713867850156
- type: euclidean_pearson
value: 77.97948563800394
- type: euclidean_spearman
value: 74.2371211567807
- type: manhattan_pearson
value: 77.69697879669705
- type: manhattan_spearman
value: 73.86529778022278
task:
type: STS
- dataset:
config: default
name: MTEB STS13
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
split: test
type: mteb/sts13-sts
metrics:
- type: cos_sim_pearson
value: 77.0293269315045
- type: cos_sim_spearman
value: 78.02555120584198
- type: euclidean_pearson
value: 78.25398100379078
- type: euclidean_spearman
value: 78.66963870599464
- type: manhattan_pearson
value: 78.14314682167348
- type: manhattan_spearman
value: 78.57692322969135
task:
type: STS
- dataset:
config: default
name: MTEB STS14
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
split: test
type: mteb/sts14-sts
metrics:
- type: cos_sim_pearson
value: 79.16989925136942
- type: cos_sim_spearman
value: 76.5996225327091
- type: euclidean_pearson
value: 77.8319003279786
- type: euclidean_spearman
value: 76.42824009468998
- type: manhattan_pearson
value: 77.69118862737736
- type: manhattan_spearman
value: 76.25568104762812
task:
type: STS
- dataset:
config: default
name: MTEB STS15
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
split: test
type: mteb/sts15-sts
metrics:
- type: cos_sim_pearson
value: 87.42012286935325
- type: cos_sim_spearman
value: 88.15654297884122
- type: euclidean_pearson
value: 87.34082819427852
- type: euclidean_spearman
value: 88.06333589547084
- type: manhattan_pearson
value: 87.25115596784842
- type: manhattan_spearman
value: 87.9559927695203
task:
type: STS
- dataset:
config: default
name: MTEB STS16
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
split: test
type: mteb/sts16-sts
metrics:
- type: cos_sim_pearson
value: 82.88222044996712
- type: cos_sim_spearman
value: 84.28476589061077
- type: euclidean_pearson
value: 83.17399758058309
- type: euclidean_spearman
value: 83.85497357244542
- type: manhattan_pearson
value: 83.0308397703786
- type: manhattan_spearman
value: 83.71554539935046
task:
type: STS
- dataset:
config: ko-ko
name: MTEB STS17 (ko-ko)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 80.20682986257339
- type: cos_sim_spearman
value: 79.94567120362092
- type: euclidean_pearson
value: 79.43122480368902
- type: euclidean_spearman
value: 79.94802077264987
- type: manhattan_pearson
value: 79.32653021527081
- type: manhattan_spearman
value: 79.80961146709178
task:
type: STS
- dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 74.46578144394383
- type: cos_sim_spearman
value: 74.52496637472179
- type: euclidean_pearson
value: 72.2903807076809
- type: euclidean_spearman
value: 73.55549359771645
- type: manhattan_pearson
value: 72.09324837709393
- type: manhattan_spearman
value: 73.36743103606581
task:
type: STS
- dataset:
config: en-ar
name: MTEB STS17 (en-ar)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 71.37272335116
- type: cos_sim_spearman
value: 71.26702117766037
- type: euclidean_pearson
value: 67.114829954434
- type: euclidean_spearman
value: 66.37938893947761
- type: manhattan_pearson
value: 66.79688574095246
- type: manhattan_spearman
value: 66.17292828079667
task:
type: STS
- dataset:
config: en-de
name: MTEB STS17 (en-de)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 80.61016770129092
- type: cos_sim_spearman
value: 82.08515426632214
- type: euclidean_pearson
value: 80.557340361131
- type: euclidean_spearman
value: 80.37585812266175
- type: manhattan_pearson
value: 80.6782873404285
- type: manhattan_spearman
value: 80.6678073032024
task:
type: STS
- dataset:
config: en-en
name: MTEB STS17 (en-en)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 87.00150745350108
- type: cos_sim_spearman
value: 87.83441972211425
- type: euclidean_pearson
value: 87.94826702308792
- type: euclidean_spearman
value: 87.46143974860725
- type: manhattan_pearson
value: 87.97560344306105
- type: manhattan_spearman
value: 87.5267102829796
task:
type: STS
- dataset:
config: en-tr
name: MTEB STS17 (en-tr)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 64.76325252267235
- type: cos_sim_spearman
value: 63.32615095463905
- type: euclidean_pearson
value: 64.07920669155716
- type: euclidean_spearman
value: 61.21409893072176
- type: manhattan_pearson
value: 64.26308625680016
- type: manhattan_spearman
value: 61.2438185254079
task:
type: STS
- dataset:
config: es-en
name: MTEB STS17 (es-en)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 75.82644463022595
- type: cos_sim_spearman
value: 76.50381269945073
- type: euclidean_pearson
value: 75.1328548315934
- type: euclidean_spearman
value: 75.63761139408453
- type: manhattan_pearson
value: 75.18610101241407
- type: manhattan_spearman
value: 75.30669266354164
task:
type: STS
- dataset:
config: es-es
name: MTEB STS17 (es-es)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 87.49994164686832
- type: cos_sim_spearman
value: 86.73743986245549
- type: euclidean_pearson
value: 86.8272894387145
- type: euclidean_spearman
value: 85.97608491000507
- type: manhattan_pearson
value: 86.74960140396779
- type: manhattan_spearman
value: 85.79285984190273
task:
type: STS
- dataset:
config: fr-en
name: MTEB STS17 (fr-en)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 79.58172210788469
- type: cos_sim_spearman
value: 80.17516468334607
- type: euclidean_pearson
value: 77.56537843470504
- type: euclidean_spearman
value: 77.57264627395521
- type: manhattan_pearson
value: 78.09703521695943
- type: manhattan_spearman
value: 78.15942760916954
task:
type: STS
- dataset:
config: it-en
name: MTEB STS17 (it-en)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 79.7589932931751
- type: cos_sim_spearman
value: 80.15210089028162
- type: euclidean_pearson
value: 77.54135223516057
- type: euclidean_spearman
value: 77.52697996368764
- type: manhattan_pearson
value: 77.65734439572518
- type: manhattan_spearman
value: 77.77702992016121
task:
type: STS
- dataset:
config: nl-en
name: MTEB STS17 (nl-en)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 79.16682365511267
- type: cos_sim_spearman
value: 79.25311267628506
- type: euclidean_pearson
value: 77.54882036762244
- type: euclidean_spearman
value: 77.33212935194827
- type: manhattan_pearson
value: 77.98405516064015
- type: manhattan_spearman
value: 77.85075717865719
task:
type: STS
- dataset:
config: en
name: MTEB STS22 (en)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 59.10473294775917
- type: cos_sim_spearman
value: 61.82780474476838
- type: euclidean_pearson
value: 45.885111672377256
- type: euclidean_spearman
value: 56.88306351932454
- type: manhattan_pearson
value: 46.101218127323186
- type: manhattan_spearman
value: 56.80953694186333
task:
type: STS
- dataset:
config: de
name: MTEB STS22 (de)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 45.781923079584146
- type: cos_sim_spearman
value: 55.95098449691107
- type: euclidean_pearson
value: 25.4571031323205
- type: euclidean_spearman
value: 49.859978118078935
- type: manhattan_pearson
value: 25.624938455041384
- type: manhattan_spearman
value: 49.99546185049401
task:
type: STS
- dataset:
config: es
name: MTEB STS22 (es)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 60.00618133997907
- type: cos_sim_spearman
value: 66.57896677718321
- type: euclidean_pearson
value: 42.60118466388821
- type: euclidean_spearman
value: 62.8210759715209
- type: manhattan_pearson
value: 42.63446860604094
- type: manhattan_spearman
value: 62.73803068925271
task:
type: STS
- dataset:
config: pl
name: MTEB STS22 (pl)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 28.460759121626943
- type: cos_sim_spearman
value: 34.13459007469131
- type: euclidean_pearson
value: 6.0917739325525195
- type: euclidean_spearman
value: 27.9947262664867
- type: manhattan_pearson
value: 6.16877864169911
- type: manhattan_spearman
value: 28.00664163971514
task:
type: STS
- dataset:
config: tr
name: MTEB STS22 (tr)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 57.42546621771696
- type: cos_sim_spearman
value: 63.699663168970474
- type: euclidean_pearson
value: 38.12085278789738
- type: euclidean_spearman
value: 58.12329140741536
- type: manhattan_pearson
value: 37.97364549443335
- type: manhattan_spearman
value: 57.81545502318733
task:
type: STS
- dataset:
config: ar
name: MTEB STS22 (ar)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 46.82241380954213
- type: cos_sim_spearman
value: 57.86569456006391
- type: euclidean_pearson
value: 31.80480070178813
- type: euclidean_spearman
value: 52.484000620130104
- type: manhattan_pearson
value: 31.952708554646097
- type: manhattan_spearman
value: 52.8560972356195
task:
type: STS
- dataset:
config: ru
name: MTEB STS22 (ru)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 52.00447170498087
- type: cos_sim_spearman
value: 60.664116225735164
- type: euclidean_pearson
value: 33.87382555421702
- type: euclidean_spearman
value: 55.74649067458667
- type: manhattan_pearson
value: 33.99117246759437
- type: manhattan_spearman
value: 55.98749034923899
task:
type: STS
- dataset:
config: zh
name: MTEB STS22 (zh)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 58.06497233105448
- type: cos_sim_spearman
value: 65.62968801135676
- type: euclidean_pearson
value: 47.482076613243905
- type: euclidean_spearman
value: 62.65137791498299
- type: manhattan_pearson
value: 47.57052626104093
- type: manhattan_spearman
value: 62.436916516613294
task:
type: STS
- dataset:
config: fr
name: MTEB STS22 (fr)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 70.49397298562575
- type: cos_sim_spearman
value: 74.79604041187868
- type: euclidean_pearson
value: 49.661891561317795
- type: euclidean_spearman
value: 70.31535537621006
- type: manhattan_pearson
value: 49.553715741850006
- type: manhattan_spearman
value: 70.24779344636806
task:
type: STS
- dataset:
config: de-en
name: MTEB STS22 (de-en)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 55.640574515348696
- type: cos_sim_spearman
value: 54.927959317689
- type: euclidean_pearson
value: 29.00139666967476
- type: euclidean_spearman
value: 41.86386566971605
- type: manhattan_pearson
value: 29.47411067730344
- type: manhattan_spearman
value: 42.337438424952786
task:
type: STS
- dataset:
config: es-en
name: MTEB STS22 (es-en)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 68.14095292259312
- type: cos_sim_spearman
value: 73.99017581234789
- type: euclidean_pearson
value: 46.46304297872084
- type: euclidean_spearman
value: 60.91834114800041
- type: manhattan_pearson
value: 47.07072666338692
- type: manhattan_spearman
value: 61.70415727977926
task:
type: STS
- dataset:
config: it
name: MTEB STS22 (it)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 73.27184653359575
- type: cos_sim_spearman
value: 77.76070252418626
- type: euclidean_pearson
value: 62.30586577544778
- type: euclidean_spearman
value: 75.14246629110978
- type: manhattan_pearson
value: 62.328196884927046
- type: manhattan_spearman
value: 75.1282792981433
task:
type: STS
- dataset:
config: pl-en
name: MTEB STS22 (pl-en)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 71.59448528829957
- type: cos_sim_spearman
value: 70.37277734222123
- type: euclidean_pearson
value: 57.63145565721123
- type: euclidean_spearman
value: 66.10113048304427
- type: manhattan_pearson
value: 57.18897811586808
- type: manhattan_spearman
value: 66.5595511215901
task:
type: STS
- dataset:
config: zh-en
name: MTEB STS22 (zh-en)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 66.37520607720838
- type: cos_sim_spearman
value: 69.92282148997948
- type: euclidean_pearson
value: 40.55768770125291
- type: euclidean_spearman
value: 55.189128944669605
- type: manhattan_pearson
value: 41.03566433468883
- type: manhattan_spearman
value: 55.61251893174558
task:
type: STS
- dataset:
config: es-it
name: MTEB STS22 (es-it)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 57.791929533771835
- type: cos_sim_spearman
value: 66.45819707662093
- type: euclidean_pearson
value: 39.03686018511092
- type: euclidean_spearman
value: 56.01282695640428
- type: manhattan_pearson
value: 38.91586623619632
- type: manhattan_spearman
value: 56.69394943612747
task:
type: STS
- dataset:
config: de-fr
name: MTEB STS22 (de-fr)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 47.82224468473866
- type: cos_sim_spearman
value: 59.467307194781164
- type: euclidean_pearson
value: 27.428459190256145
- type: euclidean_spearman
value: 60.83463107397519
- type: manhattan_pearson
value: 27.487391578496638
- type: manhattan_spearman
value: 61.281380460246496
task:
type: STS
- dataset:
config: de-pl
name: MTEB STS22 (de-pl)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 16.306666792752644
- type: cos_sim_spearman
value: 39.35486427252405
- type: euclidean_pearson
value: -2.7887154897955435
- type: euclidean_spearman
value: 27.1296051831719
- type: manhattan_pearson
value: -3.202291270581297
- type: manhattan_spearman
value: 26.32895849218158
task:
type: STS
- dataset:
config: fr-pl
name: MTEB STS22 (fr-pl)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 59.67006803805076
- type: cos_sim_spearman
value: 73.24670207647144
- type: euclidean_pearson
value: 46.91884681500483
- type: euclidean_spearman
value: 16.903085094570333
- type: manhattan_pearson
value: 46.88391675325812
- type: manhattan_spearman
value: 28.17180849095055
task:
type: STS
- dataset:
config: default
name: MTEB STSBenchmark
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
split: test
type: mteb/stsbenchmark-sts
metrics:
- type: cos_sim_pearson
value: 83.79555591223837
- type: cos_sim_spearman
value: 85.63658602085185
- type: euclidean_pearson
value: 85.22080894037671
- type: euclidean_spearman
value: 85.54113580167038
- type: manhattan_pearson
value: 85.1639505960118
- type: manhattan_spearman
value: 85.43502665436196
task:
type: STS
- dataset:
config: default
name: MTEB SciDocsRR
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
split: test
type: mteb/scidocs-reranking
metrics:
- type: map
value: 80.73900991689766
- type: mrr
value: 94.81624131133934
task:
type: Reranking
- dataset:
config: default
name: MTEB SciFact
revision: None
split: test
type: scifact
metrics:
- type: map_at_1
value: 55.678000000000004
- type: map_at_10
value: 65.135
- type: map_at_100
value: 65.824
- type: map_at_1000
value: 65.852
- type: map_at_3
value: 62.736000000000004
- type: map_at_5
value: 64.411
- type: mrr_at_1
value: 58.333
- type: mrr_at_10
value: 66.5
- type: mrr_at_100
value: 67.053
- type: mrr_at_1000
value: 67.08
- type: mrr_at_3
value: 64.944
- type: mrr_at_5
value: 65.89399999999999
- type: ndcg_at_1
value: 58.333
- type: ndcg_at_10
value: 69.34700000000001
- type: ndcg_at_100
value: 72.32
- type: ndcg_at_1000
value: 73.014
- type: ndcg_at_3
value: 65.578
- type: ndcg_at_5
value: 67.738
- type: precision_at_1
value: 58.333
- type: precision_at_10
value: 9.033
- type: precision_at_100
value: 1.0670000000000002
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 25.444
- type: precision_at_5
value: 16.933
- type: recall_at_1
value: 55.678000000000004
- type: recall_at_10
value: 80.72200000000001
- type: recall_at_100
value: 93.93299999999999
- type: recall_at_1000
value: 99.333
- type: recall_at_3
value: 70.783
- type: recall_at_5
value: 75.978
task:
type: Retrieval
- dataset:
config: default
name: MTEB SprintDuplicateQuestions
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
split: test
type: mteb/sprintduplicatequestions-pairclassification
metrics:
- type: cos_sim_accuracy
value: 99.74653465346535
- type: cos_sim_ap
value: 93.01476369929063
- type: cos_sim_f1
value: 86.93009118541033
- type: cos_sim_precision
value: 88.09034907597535
- type: cos_sim_recall
value: 85.8
- type: dot_accuracy
value: 99.22970297029703
- type: dot_ap
value: 51.58725659485144
- type: dot_f1
value: 53.51351351351352
- type: dot_precision
value: 58.235294117647065
- type: dot_recall
value: 49.5
- type: euclidean_accuracy
value: 99.74356435643564
- type: euclidean_ap
value: 92.40332894384368
- type: euclidean_f1
value: 86.97838109602817
- type: euclidean_precision
value: 87.46208291203236
- type: euclidean_recall
value: 86.5
- type: manhattan_accuracy
value: 99.73069306930694
- type: manhattan_ap
value: 92.01320815721121
- type: manhattan_f1
value: 86.4135864135864
- type: manhattan_precision
value: 86.32734530938124
- type: manhattan_recall
value: 86.5
- type: max_accuracy
value: 99.74653465346535
- type: max_ap
value: 93.01476369929063
- type: max_f1
value: 86.97838109602817
task:
type: PairClassification
- dataset:
config: default
name: MTEB StackExchangeClustering
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
split: test
type: mteb/stackexchange-clustering
metrics:
- type: v_measure
value: 55.2660514302523
task:
type: Clustering
- dataset:
config: default
name: MTEB StackExchangeClusteringP2P
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
split: test
type: mteb/stackexchange-clustering-p2p
metrics:
- type: v_measure
value: 30.4637783572547
task:
type: Clustering
- dataset:
config: default
name: MTEB StackOverflowDupQuestions
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
split: test
type: mteb/stackoverflowdupquestions-reranking
metrics:
- type: map
value: 49.41377758357637
- type: mrr
value: 50.138451213818854
task:
type: Reranking
- dataset:
config: default
name: MTEB SummEval
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
split: test
type: mteb/summeval
metrics:
- type: cos_sim_pearson
value: 28.887846011166594
- type: cos_sim_spearman
value: 30.10823258355903
- type: dot_pearson
value: 12.888049550236385
- type: dot_spearman
value: 12.827495903098123
task:
type: Summarization
- dataset:
config: default
name: MTEB TRECCOVID
revision: None
split: test
type: trec-covid
metrics:
- type: map_at_1
value: 0.21
- type: map_at_10
value: 1.667
- type: map_at_100
value: 9.15
- type: map_at_1000
value: 22.927
- type: map_at_3
value: 0.573
- type: map_at_5
value: 0.915
- type: mrr_at_1
value: 80
- type: mrr_at_10
value: 87.167
- type: mrr_at_100
value: 87.167
- type: mrr_at_1000
value: 87.167
- type: mrr_at_3
value: 85.667
- type: mrr_at_5
value: 87.167
- type: ndcg_at_1
value: 76
- type: ndcg_at_10
value: 69.757
- type: ndcg_at_100
value: 52.402
- type: ndcg_at_1000
value: 47.737
- type: ndcg_at_3
value: 71.866
- type: ndcg_at_5
value: 72.225
- type: precision_at_1
value: 80
- type: precision_at_10
value: 75
- type: precision_at_100
value: 53.959999999999994
- type: precision_at_1000
value: 21.568
- type: precision_at_3
value: 76.667
- type: precision_at_5
value: 78
- type: recall_at_1
value: 0.21
- type: recall_at_10
value: 1.9189999999999998
- type: recall_at_100
value: 12.589
- type: recall_at_1000
value: 45.312000000000005
- type: recall_at_3
value: 0.61
- type: recall_at_5
value: 1.019
task:
type: Retrieval
- dataset:
config: sqi-eng
name: MTEB Tatoeba (sqi-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 92.10000000000001
- type: f1
value: 90.06
- type: precision
value: 89.17333333333333
- type: recall
value: 92.10000000000001
task:
type: BitextMining
- dataset:
config: fry-eng
name: MTEB Tatoeba (fry-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 56.06936416184971
- type: f1
value: 50.87508028259473
- type: precision
value: 48.97398843930635
- type: recall
value: 56.06936416184971
task:
type: BitextMining
- dataset:
config: kur-eng
name: MTEB Tatoeba (kur-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 57.3170731707317
- type: f1
value: 52.96080139372822
- type: precision
value: 51.67861124382864
- type: recall
value: 57.3170731707317
task:
type: BitextMining
- dataset:
config: tur-eng
name: MTEB Tatoeba (tur-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.67333333333333
- type: precision
value: 91.90833333333333
- type: recall
value: 94.3
task:
type: BitextMining
- dataset:
config: deu-eng
name: MTEB Tatoeba (deu-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 97.07333333333332
- type: precision
value: 96.79500000000002
- type: recall
value: 97.7
task:
type: BitextMining
- dataset:
config: nld-eng
name: MTEB Tatoeba (nld-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 94.69999999999999
- type: f1
value: 93.2
- type: precision
value: 92.48333333333333
- type: recall
value: 94.69999999999999
task:
type: BitextMining
- dataset:
config: ron-eng
name: MTEB Tatoeba (ron-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 92.9
- type: f1
value: 91.26666666666667
- type: precision
value: 90.59444444444445
- type: recall
value: 92.9
task:
type: BitextMining
- dataset:
config: ang-eng
name: MTEB Tatoeba (ang-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 34.32835820895522
- type: f1
value: 29.074180380150533
- type: precision
value: 28.068207322920596
- type: recall
value: 34.32835820895522
task:
type: BitextMining
- dataset:
config: ido-eng
name: MTEB Tatoeba (ido-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 78.5
- type: f1
value: 74.3945115995116
- type: precision
value: 72.82967843459222
- type: recall
value: 78.5
task:
type: BitextMining
- dataset:
config: jav-eng
name: MTEB Tatoeba (jav-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 66.34146341463415
- type: f1
value: 61.2469400518181
- type: precision
value: 59.63977756660683
- type: recall
value: 66.34146341463415
task:
type: BitextMining
- dataset:
config: isl-eng
name: MTEB Tatoeba (isl-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 80.9
- type: f1
value: 76.90349206349207
- type: precision
value: 75.32921568627451
- type: recall
value: 80.9
task:
type: BitextMining
- dataset:
config: slv-eng
name: MTEB Tatoeba (slv-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 84.93317132442284
- type: f1
value: 81.92519105034295
- type: precision
value: 80.71283920615635
- type: recall
value: 84.93317132442284
task:
type: BitextMining
- dataset:
config: cym-eng
name: MTEB Tatoeba (cym-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 71.1304347826087
- type: f1
value: 65.22394755003451
- type: precision
value: 62.912422360248435
- type: recall
value: 71.1304347826087
task:
type: BitextMining
- dataset:
config: kaz-eng
name: MTEB Tatoeba (kaz-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 79.82608695652173
- type: f1
value: 75.55693581780538
- type: precision
value: 73.79420289855072
- type: recall
value: 79.82608695652173
task:
type: BitextMining
- dataset:
config: est-eng
name: MTEB Tatoeba (est-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 74
- type: f1
value: 70.51022222222223
- type: precision
value: 69.29673599347512
- type: recall
value: 74
task:
type: BitextMining
- dataset:
config: heb-eng
name: MTEB Tatoeba (heb-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 78.7
- type: f1
value: 74.14238095238095
- type: precision
value: 72.27214285714285
- type: recall
value: 78.7
task:
type: BitextMining
- dataset:
config: gla-eng
name: MTEB Tatoeba (gla-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 48.97466827503016
- type: f1
value: 43.080330405420874
- type: precision
value: 41.36505499593557
- type: recall
value: 48.97466827503016
task:
type: BitextMining
- dataset:
config: mar-eng
name: MTEB Tatoeba (mar-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 89.60000000000001
- type: f1
value: 86.62333333333333
- type: precision
value: 85.225
- type: recall
value: 89.60000000000001
task:
type: BitextMining
- dataset:
config: lat-eng
name: MTEB Tatoeba (lat-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 45.2
- type: f1
value: 39.5761253006253
- type: precision
value: 37.991358436312
- type: recall
value: 45.2
task:
type: BitextMining
- dataset:
config: bel-eng
name: MTEB Tatoeba (bel-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 89.5
- type: f1
value: 86.70333333333333
- type: precision
value: 85.53166666666667
- type: recall
value: 89.5
task:
type: BitextMining
- dataset:
config: pms-eng
name: MTEB Tatoeba (pms-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 50.095238095238095
- type: f1
value: 44.60650460650461
- type: precision
value: 42.774116796477045
- type: recall
value: 50.095238095238095
task:
type: BitextMining
- dataset:
config: gle-eng
name: MTEB Tatoeba (gle-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 63.4
- type: f1
value: 58.35967261904762
- type: precision
value: 56.54857142857143
- type: recall
value: 63.4
task:
type: BitextMining
- dataset:
config: pes-eng
name: MTEB Tatoeba (pes-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 89.2
- type: f1
value: 87.075
- type: precision
value: 86.12095238095239
- type: recall
value: 89.2
task:
type: BitextMining
- dataset:
config: nob-eng
name: MTEB Tatoeba (nob-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 96.8
- type: f1
value: 95.90333333333334
- type: precision
value: 95.50833333333333
- type: recall
value: 96.8
task:
type: BitextMining
- dataset:
config: bul-eng
name: MTEB Tatoeba (bul-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 90.9
- type: f1
value: 88.6288888888889
- type: precision
value: 87.61607142857142
- type: recall
value: 90.9
task:
type: BitextMining
- dataset:
config: cbk-eng
name: MTEB Tatoeba (cbk-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 65.2
- type: f1
value: 60.54377630539395
- type: precision
value: 58.89434482711381
- type: recall
value: 65.2
task:
type: BitextMining
- dataset:
config: hun-eng
name: MTEB Tatoeba (hun-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 87
- type: f1
value: 84.32412698412699
- type: precision
value: 83.25527777777778
- type: recall
value: 87
task:
type: BitextMining
- dataset:
config: uig-eng
name: MTEB Tatoeba (uig-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 68.7
- type: f1
value: 63.07883541295306
- type: precision
value: 61.06117424242426
- type: recall
value: 68.7
task:
type: BitextMining
- dataset:
config: rus-eng
name: MTEB Tatoeba (rus-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 93.7
- type: f1
value: 91.78333333333335
- type: precision
value: 90.86666666666667
- type: recall
value: 93.7
task:
type: BitextMining
- dataset:
config: spa-eng
name: MTEB Tatoeba (spa-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 96.96666666666667
- type: precision
value: 96.61666666666667
- type: recall
value: 97.7
task:
type: BitextMining
- dataset:
config: hye-eng
name: MTEB Tatoeba (hye-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 88.27493261455525
- type: f1
value: 85.90745732255168
- type: precision
value: 84.91389637616052
- type: recall
value: 88.27493261455525
task:
type: BitextMining
- dataset:
config: tel-eng
name: MTEB Tatoeba (tel-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 90.5982905982906
- type: f1
value: 88.4900284900285
- type: precision
value: 87.57122507122507
- type: recall
value: 90.5982905982906
task:
type: BitextMining
- dataset:
config: afr-eng
name: MTEB Tatoeba (afr-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 89.5
- type: f1
value: 86.90769841269842
- type: precision
value: 85.80178571428571
- type: recall
value: 89.5
task:
type: BitextMining
- dataset:
config: mon-eng
name: MTEB Tatoeba (mon-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 82.5
- type: f1
value: 78.36796536796538
- type: precision
value: 76.82196969696969
- type: recall
value: 82.5
task:
type: BitextMining
- dataset:
config: arz-eng
name: MTEB Tatoeba (arz-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 71.48846960167715
- type: f1
value: 66.78771089148448
- type: precision
value: 64.98302885095339
- type: recall
value: 71.48846960167715
task:
type: BitextMining
- dataset:
config: hrv-eng
name: MTEB Tatoeba (hrv-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.50333333333333
- type: precision
value: 91.77499999999999
- type: recall
value: 94.1
task:
type: BitextMining
- dataset:
config: nov-eng
name: MTEB Tatoeba (nov-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 71.20622568093385
- type: f1
value: 66.83278891450098
- type: precision
value: 65.35065777283677
- type: recall
value: 71.20622568093385
task:
type: BitextMining
- dataset:
config: gsw-eng
name: MTEB Tatoeba (gsw-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 48.717948717948715
- type: f1
value: 43.53146853146853
- type: precision
value: 42.04721204721204
- type: recall
value: 48.717948717948715
task:
type: BitextMining
- dataset:
config: nds-eng
name: MTEB Tatoeba (nds-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 58.5
- type: f1
value: 53.8564991863928
- type: precision
value: 52.40329436122275
- type: recall
value: 58.5
task:
type: BitextMining
- dataset:
config: ukr-eng
name: MTEB Tatoeba (ukr-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 90.8
- type: f1
value: 88.29
- type: precision
value: 87.09166666666667
- type: recall
value: 90.8
task:
type: BitextMining
- dataset:
config: uzb-eng
name: MTEB Tatoeba (uzb-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 67.28971962616822
- type: f1
value: 62.63425307817832
- type: precision
value: 60.98065939771546
- type: recall
value: 67.28971962616822
task:
type: BitextMining
- dataset:
config: lit-eng
name: MTEB Tatoeba (lit-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 78.7
- type: f1
value: 75.5264472455649
- type: precision
value: 74.38205086580086
- type: recall
value: 78.7
task:
type: BitextMining
- dataset:
config: ina-eng
name: MTEB Tatoeba (ina-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 88.7
- type: f1
value: 86.10809523809525
- type: precision
value: 85.07602564102565
- type: recall
value: 88.7
task:
type: BitextMining
- dataset:
config: lfn-eng
name: MTEB Tatoeba (lfn-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 56.99999999999999
- type: f1
value: 52.85487521402737
- type: precision
value: 51.53985162713104
- type: recall
value: 56.99999999999999
task:
type: BitextMining
- dataset:
config: zsm-eng
name: MTEB Tatoeba (zsm-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 94
- type: f1
value: 92.45333333333333
- type: precision
value: 91.79166666666667
- type: recall
value: 94
task:
type: BitextMining
- dataset:
config: ita-eng
name: MTEB Tatoeba (ita-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 92.30000000000001
- type: f1
value: 90.61333333333333
- type: precision
value: 89.83333333333331
- type: recall
value: 92.30000000000001
task:
type: BitextMining
- dataset:
config: cmn-eng
name: MTEB Tatoeba (cmn-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 94.69999999999999
- type: f1
value: 93.34555555555555
- type: precision
value: 92.75416666666668
- type: recall
value: 94.69999999999999
task:
type: BitextMining
- dataset:
config: lvs-eng
name: MTEB Tatoeba (lvs-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 80.2
- type: f1
value: 76.6563035113035
- type: precision
value: 75.3014652014652
- type: recall
value: 80.2
task:
type: BitextMining
- dataset:
config: glg-eng
name: MTEB Tatoeba (glg-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 84.7
- type: f1
value: 82.78689263765207
- type: precision
value: 82.06705086580087
- type: recall
value: 84.7
task:
type: BitextMining
- dataset:
config: ceb-eng
name: MTEB Tatoeba (ceb-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 50.33333333333333
- type: f1
value: 45.461523661523664
- type: precision
value: 43.93545574795575
- type: recall
value: 50.33333333333333
task:
type: BitextMining
- dataset:
config: bre-eng
name: MTEB Tatoeba (bre-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 6.6000000000000005
- type: f1
value: 5.442121400446441
- type: precision
value: 5.146630385487529
- type: recall
value: 6.6000000000000005
task:
type: BitextMining
- dataset:
config: ben-eng
name: MTEB Tatoeba (ben-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 85
- type: f1
value: 81.04666666666667
- type: precision
value: 79.25
- type: recall
value: 85
task:
type: BitextMining
- dataset:
config: swg-eng
name: MTEB Tatoeba (swg-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 47.32142857142857
- type: f1
value: 42.333333333333336
- type: precision
value: 40.69196428571429
- type: recall
value: 47.32142857142857
task:
type: BitextMining
- dataset:
config: arq-eng
name: MTEB Tatoeba (arq-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 30.735455543358945
- type: f1
value: 26.73616790022338
- type: precision
value: 25.397823220451283
- type: recall
value: 30.735455543358945
task:
type: BitextMining
- dataset:
config: kab-eng
name: MTEB Tatoeba (kab-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 25.1
- type: f1
value: 21.975989896371022
- type: precision
value: 21.059885632257203
- type: recall
value: 25.1
task:
type: BitextMining
- dataset:
config: fra-eng
name: MTEB Tatoeba (fra-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.75666666666666
- type: precision
value: 92.06166666666665
- type: recall
value: 94.3
task:
type: BitextMining
- dataset:
config: por-eng
name: MTEB Tatoeba (por-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.74
- type: precision
value: 92.09166666666667
- type: recall
value: 94.1
task:
type: BitextMining
- dataset:
config: tat-eng
name: MTEB Tatoeba (tat-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 71.3
- type: f1
value: 66.922442002442
- type: precision
value: 65.38249567099568
- type: recall
value: 71.3
task:
type: BitextMining
- dataset:
config: oci-eng
name: MTEB Tatoeba (oci-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 40.300000000000004
- type: f1
value: 35.78682789299971
- type: precision
value: 34.66425128716588
- type: recall
value: 40.300000000000004
task:
type: BitextMining
- dataset:
config: pol-eng
name: MTEB Tatoeba (pol-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 96
- type: f1
value: 94.82333333333334
- type: precision
value: 94.27833333333334
- type: recall
value: 96
task:
type: BitextMining
- dataset:
config: war-eng
name: MTEB Tatoeba (war-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 51.1
- type: f1
value: 47.179074753133584
- type: precision
value: 46.06461044702424
- type: recall
value: 51.1
task:
type: BitextMining
- dataset:
config: aze-eng
name: MTEB Tatoeba (aze-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 87.7
- type: f1
value: 84.71
- type: precision
value: 83.46166666666667
- type: recall
value: 87.7
task:
type: BitextMining
- dataset:
config: vie-eng
name: MTEB Tatoeba (vie-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 95.8
- type: f1
value: 94.68333333333334
- type: precision
value: 94.13333333333334
- type: recall
value: 95.8
task:
type: BitextMining
- dataset:
config: nno-eng
name: MTEB Tatoeba (nno-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 85.39999999999999
- type: f1
value: 82.5577380952381
- type: precision
value: 81.36833333333334
- type: recall
value: 85.39999999999999
task:
type: BitextMining
- dataset:
config: cha-eng
name: MTEB Tatoeba (cha-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 21.16788321167883
- type: f1
value: 16.948865627297987
- type: precision
value: 15.971932568647897
- type: recall
value: 21.16788321167883
task:
type: BitextMining
- dataset:
config: mhr-eng
name: MTEB Tatoeba (mhr-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 6.9
- type: f1
value: 5.515526831658907
- type: precision
value: 5.141966366966367
- type: recall
value: 6.9
task:
type: BitextMining
- dataset:
config: dan-eng
name: MTEB Tatoeba (dan-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 93.2
- type: f1
value: 91.39666666666668
- type: precision
value: 90.58666666666667
- type: recall
value: 93.2
task:
type: BitextMining
- dataset:
config: ell-eng
name: MTEB Tatoeba (ell-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 92.2
- type: f1
value: 89.95666666666666
- type: precision
value: 88.92833333333333
- type: recall
value: 92.2
task:
type: BitextMining
- dataset:
config: amh-eng
name: MTEB Tatoeba (amh-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 79.76190476190477
- type: f1
value: 74.93386243386244
- type: precision
value: 73.11011904761904
- type: recall
value: 79.76190476190477
task:
type: BitextMining
- dataset:
config: pam-eng
name: MTEB Tatoeba (pam-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 8.799999999999999
- type: f1
value: 6.921439712248537
- type: precision
value: 6.489885109680683
- type: recall
value: 8.799999999999999
task:
type: BitextMining
- dataset:
config: hsb-eng
name: MTEB Tatoeba (hsb-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 45.75569358178054
- type: f1
value: 40.34699501312631
- type: precision
value: 38.57886764719063
- type: recall
value: 45.75569358178054
task:
type: BitextMining
- dataset:
config: srp-eng
name: MTEB Tatoeba (srp-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 91.4
- type: f1
value: 89.08333333333333
- type: precision
value: 88.01666666666668
- type: recall
value: 91.4
task:
type: BitextMining
- dataset:
config: epo-eng
name: MTEB Tatoeba (epo-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 93.60000000000001
- type: f1
value: 92.06690476190477
- type: precision
value: 91.45095238095239
- type: recall
value: 93.60000000000001
task:
type: BitextMining
- dataset:
config: kzj-eng
name: MTEB Tatoeba (kzj-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 7.5
- type: f1
value: 6.200363129378736
- type: precision
value: 5.89115314822466
- type: recall
value: 7.5
task:
type: BitextMining
- dataset:
config: awa-eng
name: MTEB Tatoeba (awa-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 73.59307359307358
- type: f1
value: 68.38933553219267
- type: precision
value: 66.62698412698413
- type: recall
value: 73.59307359307358
task:
type: BitextMining
- dataset:
config: fao-eng
name: MTEB Tatoeba (fao-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 69.8473282442748
- type: f1
value: 64.72373682297346
- type: precision
value: 62.82834214131924
- type: recall
value: 69.8473282442748
task:
type: BitextMining
- dataset:
config: mal-eng
name: MTEB Tatoeba (mal-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 97.5254730713246
- type: f1
value: 96.72489082969432
- type: precision
value: 96.33672974284326
- type: recall
value: 97.5254730713246
task:
type: BitextMining
- dataset:
config: ile-eng
name: MTEB Tatoeba (ile-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 75.6
- type: f1
value: 72.42746031746033
- type: precision
value: 71.14036630036631
- type: recall
value: 75.6
task:
type: BitextMining
- dataset:
config: bos-eng
name: MTEB Tatoeba (bos-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 91.24293785310734
- type: f1
value: 88.86064030131826
- type: precision
value: 87.73540489642184
- type: recall
value: 91.24293785310734
task:
type: BitextMining
- dataset:
config: cor-eng
name: MTEB Tatoeba (cor-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 6.2
- type: f1
value: 4.383083659794954
- type: precision
value: 4.027861324289673
- type: recall
value: 6.2
task:
type: BitextMining
- dataset:
config: cat-eng
name: MTEB Tatoeba (cat-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 86.8
- type: f1
value: 84.09428571428572
- type: precision
value: 83.00333333333333
- type: recall
value: 86.8
task:
type: BitextMining
- dataset:
config: eus-eng
name: MTEB Tatoeba (eus-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 60.699999999999996
- type: f1
value: 56.1584972394755
- type: precision
value: 54.713456330903135
- type: recall
value: 60.699999999999996
task:
type: BitextMining
- dataset:
config: yue-eng
name: MTEB Tatoeba (yue-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 84.2
- type: f1
value: 80.66190476190475
- type: precision
value: 79.19690476190476
- type: recall
value: 84.2
task:
type: BitextMining
- dataset:
config: swe-eng
name: MTEB Tatoeba (swe-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 93.2
- type: f1
value: 91.33
- type: precision
value: 90.45
- type: recall
value: 93.2
task:
type: BitextMining
- dataset:
config: dtp-eng
name: MTEB Tatoeba (dtp-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 6.3
- type: f1
value: 5.126828976748276
- type: precision
value: 4.853614328966668
- type: recall
value: 6.3
task:
type: BitextMining
- dataset:
config: kat-eng
name: MTEB Tatoeba (kat-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 81.76943699731903
- type: f1
value: 77.82873739308057
- type: precision
value: 76.27622452019234
- type: recall
value: 81.76943699731903
task:
type: BitextMining
- dataset:
config: jpn-eng
name: MTEB Tatoeba (jpn-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 92.30000000000001
- type: f1
value: 90.29666666666665
- type: precision
value: 89.40333333333334
- type: recall
value: 92.30000000000001
task:
type: BitextMining
- dataset:
config: csb-eng
name: MTEB Tatoeba (csb-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 29.249011857707508
- type: f1
value: 24.561866096392947
- type: precision
value: 23.356583740215456
- type: recall
value: 29.249011857707508
task:
type: BitextMining
- dataset:
config: xho-eng
name: MTEB Tatoeba (xho-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 77.46478873239437
- type: f1
value: 73.23943661971832
- type: precision
value: 71.66666666666667
- type: recall
value: 77.46478873239437
task:
type: BitextMining
- dataset:
config: orv-eng
name: MTEB Tatoeba (orv-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 20.35928143712575
- type: f1
value: 15.997867865075824
- type: precision
value: 14.882104658301346
- type: recall
value: 20.35928143712575
task:
type: BitextMining
- dataset:
config: ind-eng
name: MTEB Tatoeba (ind-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 92.2
- type: f1
value: 90.25999999999999
- type: precision
value: 89.45333333333335
- type: recall
value: 92.2
task:
type: BitextMining
- dataset:
config: tuk-eng
name: MTEB Tatoeba (tuk-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 23.15270935960591
- type: f1
value: 19.65673625772148
- type: precision
value: 18.793705293464992
- type: recall
value: 23.15270935960591
task:
type: BitextMining
- dataset:
config: max-eng
name: MTEB Tatoeba (max-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 59.154929577464785
- type: f1
value: 52.3868463305083
- type: precision
value: 50.14938113529662
- type: recall
value: 59.154929577464785
task:
type: BitextMining
- dataset:
config: swh-eng
name: MTEB Tatoeba (swh-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 70.51282051282051
- type: f1
value: 66.8089133089133
- type: precision
value: 65.37645687645687
- type: recall
value: 70.51282051282051
task:
type: BitextMining
- dataset:
config: hin-eng
name: MTEB Tatoeba (hin-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 94.6
- type: f1
value: 93
- type: precision
value: 92.23333333333333
- type: recall
value: 94.6
task:
type: BitextMining
- dataset:
config: dsb-eng
name: MTEB Tatoeba (dsb-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 38.62212943632568
- type: f1
value: 34.3278276962583
- type: precision
value: 33.07646935732408
- type: recall
value: 38.62212943632568
task:
type: BitextMining
- dataset:
config: ber-eng
name: MTEB Tatoeba (ber-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 28.1
- type: f1
value: 23.579609223054604
- type: precision
value: 22.39622774921555
- type: recall
value: 28.1
task:
type: BitextMining
- dataset:
config: tam-eng
name: MTEB Tatoeba (tam-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 88.27361563517914
- type: f1
value: 85.12486427795874
- type: precision
value: 83.71335504885994
- type: recall
value: 88.27361563517914
task:
type: BitextMining
- dataset:
config: slk-eng
name: MTEB Tatoeba (slk-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 88.6
- type: f1
value: 86.39928571428571
- type: precision
value: 85.4947557997558
- type: recall
value: 88.6
task:
type: BitextMining
- dataset:
config: tgl-eng
name: MTEB Tatoeba (tgl-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 86.5
- type: f1
value: 83.77952380952381
- type: precision
value: 82.67602564102565
- type: recall
value: 86.5
task:
type: BitextMining
- dataset:
config: ast-eng
name: MTEB Tatoeba (ast-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 79.52755905511812
- type: f1
value: 75.3055868016498
- type: precision
value: 73.81889763779527
- type: recall
value: 79.52755905511812
task:
type: BitextMining
- dataset:
config: mkd-eng
name: MTEB Tatoeba (mkd-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 77.9
- type: f1
value: 73.76261904761905
- type: precision
value: 72.11670995670995
- type: recall
value: 77.9
task:
type: BitextMining
- dataset:
config: khm-eng
name: MTEB Tatoeba (khm-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 53.8781163434903
- type: f1
value: 47.25804051288816
- type: precision
value: 45.0603482390186
- type: recall
value: 53.8781163434903
task:
type: BitextMining
- dataset:
config: ces-eng
name: MTEB Tatoeba (ces-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 91.10000000000001
- type: f1
value: 88.88
- type: precision
value: 87.96333333333334
- type: recall
value: 91.10000000000001
task:
type: BitextMining
- dataset:
config: tzl-eng
name: MTEB Tatoeba (tzl-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 38.46153846153847
- type: f1
value: 34.43978243978244
- type: precision
value: 33.429487179487175
- type: recall
value: 38.46153846153847
task:
type: BitextMining
- dataset:
config: urd-eng
name: MTEB Tatoeba (urd-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 88.9
- type: f1
value: 86.19888888888887
- type: precision
value: 85.07440476190476
- type: recall
value: 88.9
task:
type: BitextMining
- dataset:
config: ara-eng
name: MTEB Tatoeba (ara-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 85.9
- type: f1
value: 82.58857142857143
- type: precision
value: 81.15666666666667
- type: recall
value: 85.9
task:
type: BitextMining
- dataset:
config: kor-eng
name: MTEB Tatoeba (kor-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 86.8
- type: f1
value: 83.36999999999999
- type: precision
value: 81.86833333333333
- type: recall
value: 86.8
task:
type: BitextMining
- dataset:
config: yid-eng
name: MTEB Tatoeba (yid-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 68.51415094339622
- type: f1
value: 63.195000099481234
- type: precision
value: 61.394033442972116
- type: recall
value: 68.51415094339622
task:
type: BitextMining
- dataset:
config: fin-eng
name: MTEB Tatoeba (fin-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 88.5
- type: f1
value: 86.14603174603175
- type: precision
value: 85.1162037037037
- type: recall
value: 88.5
task:
type: BitextMining
- dataset:
config: tha-eng
name: MTEB Tatoeba (tha-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 95.62043795620438
- type: f1
value: 94.40389294403892
- type: precision
value: 93.7956204379562
- type: recall
value: 95.62043795620438
task:
type: BitextMining
- dataset:
config: wuu-eng
name: MTEB Tatoeba (wuu-eng)
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
split: test
type: mteb/tatoeba-bitext-mining
metrics:
- type: accuracy
value: 81.8
- type: f1
value: 78.6532178932179
- type: precision
value: 77.46348795840176
- type: recall
value: 81.8
task:
type: BitextMining
- dataset:
config: default
name: MTEB Touche2020
revision: None
split: test
type: webis-touche2020
metrics:
- type: map_at_1
value: 2.603
- type: map_at_10
value: 8.5
- type: map_at_100
value: 12.985
- type: map_at_1000
value: 14.466999999999999
- type: map_at_3
value: 4.859999999999999
- type: map_at_5
value: 5.817
- type: mrr_at_1
value: 28.571
- type: mrr_at_10
value: 42.331
- type: mrr_at_100
value: 43.592999999999996
- type: mrr_at_1000
value: 43.592999999999996
- type: mrr_at_3
value: 38.435
- type: mrr_at_5
value: 39.966
- type: ndcg_at_1
value: 26.531
- type: ndcg_at_10
value: 21.353
- type: ndcg_at_100
value: 31.087999999999997
- type: ndcg_at_1000
value: 43.163000000000004
- type: ndcg_at_3
value: 22.999
- type: ndcg_at_5
value: 21.451
- type: precision_at_1
value: 28.571
- type: precision_at_10
value: 19.387999999999998
- type: precision_at_100
value: 6.265
- type: precision_at_1000
value: 1.4160000000000001
- type: precision_at_3
value: 24.490000000000002
- type: precision_at_5
value: 21.224
- type: recall_at_1
value: 2.603
- type: recall_at_10
value: 14.474
- type: recall_at_100
value: 40.287
- type: recall_at_1000
value: 76.606
- type: recall_at_3
value: 5.978
- type: recall_at_5
value: 7.819
task:
type: Retrieval
- dataset:
config: default
name: MTEB ToxicConversationsClassification
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
split: test
type: mteb/toxic_conversations_50k
metrics:
- type: accuracy
value: 69.7848
- type: ap
value: 13.661023167088224
- type: f1
value: 53.61686134460943
task:
type: Classification
- dataset:
config: default
name: MTEB TweetSentimentExtractionClassification
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
split: test
type: mteb/tweet_sentiment_extraction
metrics:
- type: accuracy
value: 61.28183361629882
- type: f1
value: 61.55481034919965
task:
type: Classification
- dataset:
config: default
name: MTEB TwentyNewsgroupsClustering
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
split: test
type: mteb/twentynewsgroups-clustering
metrics:
- type: v_measure
value: 35.972128420092396
task:
type: Clustering
- dataset:
config: default
name: MTEB TwitterSemEval2015
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
split: test
type: mteb/twittersemeval2015-pairclassification
metrics:
- type: cos_sim_accuracy
value: 85.59933241938367
- type: cos_sim_ap
value: 72.20760361208136
- type: cos_sim_f1
value: 66.4447731755424
- type: cos_sim_precision
value: 62.35539102267469
- type: cos_sim_recall
value: 71.10817941952506
- type: dot_accuracy
value: 78.98313166835548
- type: dot_ap
value: 44.492521645493795
- type: dot_f1
value: 45.814889336016094
- type: dot_precision
value: 37.02439024390244
- type: dot_recall
value: 60.07915567282321
- type: euclidean_accuracy
value: 85.3907134767837
- type: euclidean_ap
value: 71.53847289080343
- type: euclidean_f1
value: 65.95952206778834
- type: euclidean_precision
value: 61.31006346328196
- type: euclidean_recall
value: 71.37203166226914
- type: manhattan_accuracy
value: 85.40859510043511
- type: manhattan_ap
value: 71.49664104395515
- type: manhattan_f1
value: 65.98569969356485
- type: manhattan_precision
value: 63.928748144482924
- type: manhattan_recall
value: 68.17941952506597
- type: max_accuracy
value: 85.59933241938367
- type: max_ap
value: 72.20760361208136
- type: max_f1
value: 66.4447731755424
task:
type: PairClassification
- dataset:
config: default
name: MTEB TwitterURLCorpus
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
split: test
type: mteb/twitterurlcorpus-pairclassification
metrics:
- type: cos_sim_accuracy
value: 88.83261536073273
- type: cos_sim_ap
value: 85.48178133644264
- type: cos_sim_f1
value: 77.87816307403935
- type: cos_sim_precision
value: 75.88953021114926
- type: cos_sim_recall
value: 79.97382198952879
- type: dot_accuracy
value: 79.76287499514883
- type: dot_ap
value: 59.17438838475084
- type: dot_f1
value: 56.34566667855996
- type: dot_precision
value: 52.50349092359864
- type: dot_recall
value: 60.794579611949494
- type: euclidean_accuracy
value: 88.76857996662397
- type: euclidean_ap
value: 85.22764834359887
- type: euclidean_f1
value: 77.65379751543554
- type: euclidean_precision
value: 75.11152683839401
- type: euclidean_recall
value: 80.37419156144134
- type: manhattan_accuracy
value: 88.6987231730508
- type: manhattan_ap
value: 85.18907981724007
- type: manhattan_f1
value: 77.51967028849757
- type: manhattan_precision
value: 75.49992701795358
- type: manhattan_recall
value: 79.65044656606098
- type: max_accuracy
value: 88.83261536073273
- type: max_ap
value: 85.48178133644264
- type: max_f1
value: 77.87816307403935
task:
type: PairClassification
tags:
- mteb
- sentence-similarity
- onnx
- teradata
See Disclaimer below
A Teradata Vantage compatible Embeddings Model
intfloat/multilingual-e5-base
Overview of this Model
An Embedding Model which maps text (sentence/ paragraphs) into a vector. The intfloat/multilingual-e5-base model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings.
- 278.04M params (Sizes in ONNX format - "fp32": 1058.73MB, "int8": 265.5MB, "uint8": 265.5MB)
- 514 maximum input tokens
- 768 dimensions of output vector
- Licence: mit. The released models can be used for commercial purposes free of charge.
- Reference to Original Model: https://huggingface.co/intfloat/multilingual-e5-base
Quickstart: Deploying this Model in Teradata Vantage
We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion.
Note: Ensure you have access to a Teradata Database with BYOM 6.0 installed.
To get started, clone the pre-converted model directly from the Teradata HuggingFace repository.
import teradataml as tdml
import getpass
from huggingface_hub import hf_hub_download
model_name = "multilingual-e5-base"
number_dimensions_output = 768
model_file_name = "model.onnx"
# Step 1: Download Model from Teradata HuggingFace Page
hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./")
hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./")
# Step 2: Create Connection to Vantage
tdml.create_context(host = input('enter your hostname'),
username=input('enter your username'),
password = getpass.getpass("enter your password"))
# Step 3: Load Models into Vantage
# a) Embedding model
tdml.save_byom(model_id = model_name, # must be unique in the models table
model_file = f"onnx/{model_file_name}",
table_name = 'embeddings_models' )
# b) Tokenizer
tdml.save_byom(model_id = model_name, # must be unique in the models table
model_file = 'tokenizer.json',
table_name = 'embeddings_tokenizers')
# Step 4: Test ONNXEmbeddings Function
# Note that ONNXEmbeddings expects the 'payload' column to be 'txt'.
# If it has got a different name, just rename it in a subquery/CTE.
input_table = "emails.emails"
embeddings_query = f"""
SELECT
*
from mldb.ONNXEmbeddings(
on {input_table} as InputTable
on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION
on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION
using
Accumulate('id', 'txt')
ModelOutputTensor('sentence_embedding')
EnableMemoryCheck('false')
OutputFormat('FLOAT32({number_dimensions_output})')
OverwriteCachedModel('true')
) a
"""
DF_embeddings = tdml.DataFrame.from_query(embeddings_query)
DF_embeddings
What Can I Do with the Embeddings?
Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples:
- Semantic Clustering with TD_KMeans: Semantic Clustering Python Notebook
- Semantic Distance with TD_VectorDistance: Semantic Similarity Python Notebook
- RAG-Based Application with TD_VectorDistance: RAG and Bedrock Query PDF Notebook
Deep Dive into Model Conversion to ONNX
The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.
You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format.
Part 1. Importing and Converting Model using optimum
We start by importing the pre-trained intfloat/multilingual-e5-base model from Hugging Face.
To enhance performance and ensure compatibility with various execution environments, we'll use the Optimum utility to convert the model into the ONNX (Open Neural Network Exchange) format.
After conversion to ONNX, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage
We are generating ONNX files for multiple different precisions: fp32, int8, uint8
You can find the detailed conversion steps in the file convert.py
Part 2. Running the model in Python with onnxruntime & compare results
Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results.
If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database.
import onnxruntime as rt
from sentence_transformers.util import cos_sim
from sentence_transformers import SentenceTransformer
import transformers
sentences_1 = 'How is the weather today?'
sentences_2 = 'What is the current weather like today?'
# Calculate ONNX result
tokenizer = transformers.AutoTokenizer.from_pretrained("intfloat/multilingual-e5-base")
predef_sess = rt.InferenceSession("onnx/model.onnx")
enc1 = tokenizer(sentences_1)
embeddings_1_onnx = predef_sess.run(None, {"input_ids": [enc1.input_ids],
"attention_mask": [enc1.attention_mask]})
enc2 = tokenizer(sentences_2)
embeddings_2_onnx = predef_sess.run(None, {"input_ids": [enc2.input_ids],
"attention_mask": [enc2.attention_mask]})
# Calculate embeddings with SentenceTransformer
model = SentenceTransformer(model_id, trust_remote_code=True)
embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True)
embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True)
# Compare results
print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0])))
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file test_local.py
DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata.
To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations.
While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws.
You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.