t5-small-finetuned-xsum

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0734
  • Rouge1: 99.9038
  • Rouge2: 99.838
  • Rougel: 99.9145
  • Rougelsum: 99.9038
  • Gen Len: 93.9181

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 180 1.7815 9.7268 2.7047 8.7069 8.7035 155.8472
No log 2.0 360 0.6270 28.7135 19.99 27.1646 27.1386 265.2903
2.122 3.0 540 0.3572 21.4211 17.5143 21.0387 20.9118 142.7333
2.122 4.0 720 0.2757 92.8223 90.5077 92.0061 92.0015 87.0847
2.122 5.0 900 0.2493 95.6972 94.5082 95.5057 95.522 91.8556
0.4002 6.0 1080 0.2348 96.8942 96.2704 96.7552 96.7736 96.0764
0.4002 7.0 1260 0.2227 97.7669 97.4255 97.6867 97.6913 93.9097
0.4002 8.0 1440 0.2111 98.7823 98.5538 98.7622 98.7722 94.2875
0.2717 9.0 1620 0.1979 99.7455 99.6524 99.7428 99.7449 93.8569
0.2717 10.0 1800 0.1843 99.8967 99.8175 99.8953 99.8939 93.875
0.2717 11.0 1980 0.1716 99.9078 99.8578 99.9114 99.9095 93.8556
0.2244 12.0 2160 0.1606 99.9371 99.8807 99.9373 99.9373 93.9236
0.2244 13.0 2340 0.1512 99.9112 99.8535 99.9141 99.9103 93.8542
0.19 14.0 2520 0.1424 99.9573 99.919 99.9573 99.9573 93.9236
0.19 15.0 2700 0.1353 99.9679 99.9421 99.9679 99.9679 93.925
0.19 16.0 2880 0.1290 99.9234 99.8727 99.9323 99.9234 93.8736
0.1652 17.0 3060 0.1235 99.9252 99.8727 99.9359 99.9252 93.9222
0.1652 18.0 3240 0.1184 99.9038 99.8373 99.911 99.9021 93.8722
0.1652 19.0 3420 0.1137 99.9466 99.9074 99.9573 99.9466 93.9236
0.1471 20.0 3600 0.1092 99.9252 99.8727 99.9359 99.9252 93.9222
0.1471 21.0 3780 0.1053 99.9252 99.8727 99.9359 99.9252 93.9222
0.1471 22.0 3960 0.1014 99.9252 99.8727 99.9359 99.9252 93.9222
0.1331 23.0 4140 0.0982 99.9252 99.8727 99.9359 99.9252 93.9222
0.1331 24.0 4320 0.0949 99.9252 99.8727 99.9359 99.9252 93.9208
0.1226 25.0 4500 0.0918 99.9252 99.8727 99.9359 99.9252 93.9208
0.1226 26.0 4680 0.0892 99.9252 99.8727 99.9359 99.9252 93.9208
0.1226 27.0 4860 0.0867 99.9252 99.8727 99.9359 99.9252 93.9208
0.114 28.0 5040 0.0848 99.9145 99.8495 99.9252 99.9145 93.9194
0.114 29.0 5220 0.0828 99.9038 99.838 99.9145 99.9038 93.9181
0.114 30.0 5400 0.0811 99.9145 99.8495 99.9252 99.9145 93.9194
0.1074 31.0 5580 0.0794 99.9038 99.838 99.9145 99.9038 93.9181
0.1074 32.0 5760 0.0781 99.9038 99.838 99.9145 99.9038 93.9181
0.1074 33.0 5940 0.0769 99.9252 99.8669 99.9252 99.9252 93.9194
0.1027 34.0 6120 0.0757 99.9038 99.838 99.9145 99.9038 93.9181
0.1027 35.0 6300 0.0751 99.9038 99.838 99.9145 99.9038 93.9181
0.1027 36.0 6480 0.0745 99.9038 99.838 99.9145 99.9038 93.9181
0.0994 37.0 6660 0.0740 99.9038 99.838 99.9145 99.9038 93.9181
0.0994 38.0 6840 0.0737 99.9038 99.838 99.9145 99.9038 93.9181
0.0975 39.0 7020 0.0735 99.9038 99.838 99.9145 99.9038 93.9181
0.0975 40.0 7200 0.0734 99.9038 99.838 99.9145 99.9038 93.9181

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
1
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for TerryHenrickson/t5-small-finetuned-xsum

Base model

google-t5/t5-small
Finetuned
(1669)
this model