File size: 3,491 Bytes
0ddf0c9
 
 
 
 
41cb679
 
0ddf0c9
 
 
 
 
 
 
 
 
 
 
41cb679
 
 
 
 
 
 
0ddf0c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cb679
0ddf0c9
 
 
41cb679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ddf0c9
 
 
 
41cb679
0ddf0c9
41cb679
0ddf0c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-xsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0078
- Rouge1: 48.0041
- Rouge2: 41.1108
- Rougel: 48.0417
- Rougelsum: 48.0048
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 125  | 0.8794          | 6.6951  | 0.2224  | 5.4261  | 5.4191    | 18.59   |
| No log        | 2.0   | 250  | 0.1755          | 41.0386 | 32.7852 | 41.06   | 41.0268   | 19.0    |
| No log        | 3.0   | 375  | 0.0702          | 38.8519 | 30.7641 | 38.8569 | 38.8409   | 19.0    |
| 0.9138        | 4.0   | 500  | 0.0436          | 42.2193 | 34.4917 | 42.2304 | 42.2051   | 19.0    |
| 0.9138        | 5.0   | 625  | 0.0315          | 42.069  | 34.3637 | 42.1018 | 42.0801   | 19.0    |
| 0.9138        | 6.0   | 750  | 0.0233          | 45.9645 | 38.6498 | 45.9851 | 45.958    | 19.0    |
| 0.9138        | 7.0   | 875  | 0.0198          | 45.9049 | 38.6707 | 45.9519 | 45.9069   | 19.0    |
| 0.0769        | 8.0   | 1000 | 0.0175          | 45.8588 | 38.5195 | 45.8955 | 45.8691   | 19.0    |
| 0.0769        | 9.0   | 1125 | 0.0148          | 46.487  | 39.3562 | 46.5325 | 46.4933   | 19.0    |
| 0.0769        | 10.0  | 1250 | 0.0131          | 46.8666 | 39.7413 | 46.9032 | 46.8584   | 19.0    |
| 0.0769        | 11.0  | 1375 | 0.0117          | 47.1968 | 40.1561 | 47.2436 | 47.1913   | 19.0    |
| 0.0444        | 12.0  | 1500 | 0.0106          | 47.4808 | 40.4857 | 47.5092 | 47.4752   | 19.0    |
| 0.0444        | 13.0  | 1625 | 0.0098          | 47.4893 | 40.4966 | 47.5301 | 47.5073   | 19.0    |
| 0.0444        | 14.0  | 1750 | 0.0092          | 47.5574 | 40.573  | 47.5867 | 47.5567   | 19.0    |
| 0.0444        | 15.0  | 1875 | 0.0088          | 47.7141 | 40.7683 | 47.753  | 47.7052   | 19.0    |
| 0.0333        | 16.0  | 2000 | 0.0084          | 47.7701 | 40.8465 | 47.8078 | 47.7729   | 19.0    |
| 0.0333        | 17.0  | 2125 | 0.0081          | 47.8671 | 40.9538 | 47.9002 | 47.8609   | 19.0    |
| 0.0333        | 18.0  | 2250 | 0.0079          | 47.8993 | 40.993  | 47.9353 | 47.8973   | 19.0    |
| 0.0333        | 19.0  | 2375 | 0.0079          | 48.01   | 41.1113 | 48.0419 | 48.0021   | 19.0    |
| 0.029         | 20.0  | 2500 | 0.0078          | 48.0041 | 41.1108 | 48.0417 | 48.0048   | 19.0    |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3