epitgpt-conslaw-v2
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7699 | 0.9231 | 3 | 1.6638 |
1.5822 | 1.8462 | 6 | 1.4616 |
1.4283 | 2.7692 | 9 | 1.3326 |
0.9914 | 4.0 | 13 | 1.1984 |
1.2302 | 4.9231 | 16 | 1.1200 |
1.1651 | 5.8462 | 19 | 1.0621 |
1.1039 | 6.7692 | 22 | 1.0190 |
0.8057 | 8.0 | 26 | 0.9799 |
1.0442 | 8.9231 | 29 | 0.9664 |
0.7004 | 9.2308 | 30 | 0.9648 |
Framework versions
- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for Thananat/epitgpt-conslaw-v2
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ