mammals_multiclass_classification
This model is a fine-tuned version of google/vit-base-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2452
- Accuracy: 0.9496
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5501 | 1.0 | 394 | 0.3697 | 0.9207 |
0.0757 | 2.0 | 788 | 0.2894 | 0.9311 |
0.034 | 3.0 | 1182 | 0.2865 | 0.9304 |
0.0043 | 4.0 | 1576 | 0.2610 | 0.9385 |
0.0024 | 5.0 | 1970 | 0.2526 | 0.9415 |
0.0007 | 6.0 | 2364 | 0.2452 | 0.9496 |
0.0006 | 7.0 | 2758 | 0.2432 | 0.9481 |
0.0004 | 8.0 | 3152 | 0.2442 | 0.9481 |
0.0004 | 9.0 | 3546 | 0.2484 | 0.9496 |
0.0003 | 10.0 | 3940 | 0.2545 | 0.9467 |
0.0003 | 11.0 | 4334 | 0.2543 | 0.9481 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 166
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Tianmu28/mammals_multiclass_classification
Base model
google/vit-base-patch16-224