language:
- en
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- OpenAssistant/oasst_top1_2023-08-25
model-index:
- name: TinyLlama-1.1B-Chat-v0.3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 35.07
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PY007/TinyLlama-1.1B-Chat-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 57.7
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PY007/TinyLlama-1.1B-Chat-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.53
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PY007/TinyLlama-1.1B-Chat-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 36.67
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PY007/TinyLlama-1.1B-Chat-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.7
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PY007/TinyLlama-1.1B-Chat-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.68
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PY007/TinyLlama-1.1B-Chat-v0.3
name: Open LLM Leaderboard
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐๐. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
This Model
This is the chat model finetuned on top of PY007/TinyLlama-1.1B-intermediate-step-480k-1T. The dataset used is OpenAssistant/oasst_top1_2023-08-25 following the chatml format.
How to use
You will need the transformers>=4.31 Do check the TinyLlama github page for more information.
from transformers import AutoTokenizer
import transformers
import torch
model = "PY007/TinyLlama-1.1B-Chat-v0.3"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
CHAT_EOS_TOKEN_ID = 32002
prompt = "How to get in a good university?"
formatted_prompt = (
f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
)
sequences = pipeline(
formatted_prompt,
do_sample=True,
top_k=50,
top_p = 0.9,
num_return_sequences=1,
repetition_penalty=1.1,
max_new_tokens=1024,
eos_token_id=CHAT_EOS_TOKEN_ID,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 35.56 |
AI2 Reasoning Challenge (25-Shot) | 35.07 |
HellaSwag (10-Shot) | 57.70 |
MMLU (5-Shot) | 25.53 |
TruthfulQA (0-shot) | 36.67 |
Winogrande (5-shot) | 57.70 |
GSM8k (5-shot) | 0.68 |