mms_kas_speed1

This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8096
  • Wer: 0.5141

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
6.8005 0.12 100 1.8647 1.0536
1.8539 0.23 200 1.5445 0.9513
1.6826 0.35 300 1.5297 0.9316
1.6042 0.46 400 1.3865 0.9056
1.5353 0.58 500 1.3953 0.9043
1.5256 0.69 600 1.4043 0.9020
1.5491 0.81 700 1.3509 0.8694
1.475 0.93 800 1.4780 0.9107
1.4637 1.04 900 1.2694 0.8848
1.4401 1.16 1000 1.4087 0.8711
1.4125 1.27 1100 1.3147 0.8519
1.3864 1.39 1200 1.1807 0.8231
1.3294 1.5 1300 1.1504 0.8144
1.3606 1.62 1400 1.2630 0.8449
1.3254 1.74 1500 1.3070 0.8340
1.349 1.85 1600 1.1008 0.7980
1.3251 1.97 1700 1.1150 0.7854
1.3539 2.08 1800 1.0956 0.7943
1.266 2.2 1900 1.1196 0.7870
1.2787 2.31 2000 1.1659 0.7994
1.2902 2.43 2100 1.1099 0.7827
1.2761 2.55 2200 1.1361 0.8044
1.2559 2.66 2300 1.1497 0.8049
1.2294 2.78 2400 1.2398 0.8053
1.2438 2.89 2500 1.1234 0.7849
1.2736 3.01 2600 1.0433 0.7618
1.2337 3.12 2700 1.0905 0.7703
1.2079 3.24 2800 1.3420 0.8411
1.209 3.36 2900 1.0911 0.7879
1.2158 3.47 3000 1.2058 0.8023
1.176 3.59 3100 1.1623 0.7880
1.1775 3.7 3200 1.0644 0.7419
1.2212 3.82 3300 1.0549 0.7605
1.1774 3.94 3400 1.1500 0.7675
1.1046 4.05 3500 0.9748 0.7184
1.1979 4.17 3600 1.0100 0.7255
1.1544 4.28 3700 1.0290 0.7275
1.1558 4.4 3800 1.0180 0.7314
1.1593 4.51 3900 1.0051 0.7097
1.1415 4.63 4000 1.0115 0.7353
1.1399 4.75 4100 1.0527 0.7241
1.1297 4.86 4200 1.0546 0.7317
1.1137 4.98 4300 1.0818 0.7462
1.1948 5.09 4400 1.0758 0.7360
1.0913 5.21 4500 1.0204 0.7210
1.1632 5.32 4600 0.9644 0.7132
1.1216 5.44 4700 0.9569 0.6822
1.0728 5.56 4800 0.9980 0.7230
1.1097 5.67 4900 0.9867 0.7014
1.072 5.79 5000 0.9946 0.6972
1.1009 5.9 5100 0.9339 0.6818
1.1313 6.02 5200 0.9417 0.6842
1.0768 6.13 5300 0.9828 0.7195
1.0997 6.25 5400 1.0191 0.7258
1.0839 6.37 5500 1.0013 0.7045
1.0997 6.48 5600 0.9832 0.7159
1.0854 6.6 5700 1.0778 0.7397
1.0398 6.71 5800 1.0442 0.7268
1.0398 6.83 5900 1.0284 0.6932
1.0773 6.94 6000 1.1135 0.7522
1.0676 7.06 6100 0.9657 0.6816
1.0227 7.18 6200 0.9636 0.6695
1.0415 7.29 6300 0.9700 0.6709
1.0438 7.41 6400 0.9603 0.6662
1.0452 7.52 6500 0.9563 0.6674
1.0295 7.64 6600 0.9782 0.6633
1.0722 7.75 6700 0.9988 0.6752
0.9848 7.87 6800 0.9744 0.6897
1.0332 7.99 6900 0.9118 0.6485
1.0041 8.1 7000 0.8834 0.6329
1.0168 8.22 7100 0.9263 0.6365
1.0368 8.33 7200 1.0263 0.6867
1.0407 8.45 7300 1.0120 0.7029
1.0175 8.56 7400 0.8795 0.6295
1.0289 8.68 7500 0.8969 0.6294
1.018 8.8 7600 0.9635 0.6718
1.005 8.91 7700 0.9609 0.6625
1.0355 9.03 7800 0.8945 0.6302
0.9918 9.14 7900 0.8980 0.6427
1.0118 9.26 8000 0.8830 0.6211
1.0235 9.38 8100 0.8767 0.6207
0.9781 9.49 8200 0.8673 0.6104
0.9999 9.61 8300 0.9355 0.6280
0.9523 9.72 8400 0.8717 0.6121
0.9823 9.84 8500 0.8792 0.6220
1.0153 9.95 8600 0.9116 0.6311
1.0141 10.07 8700 0.8710 0.6157
0.9347 10.19 8800 0.9062 0.6315
0.9759 10.3 8900 0.8952 0.6227
0.9917 10.42 9000 0.8938 0.6283
0.9994 10.53 9100 0.8733 0.6225
0.9571 10.65 9200 0.9060 0.6364
0.9428 10.76 9300 0.8709 0.6237
0.9431 10.88 9400 0.8321 0.5943
0.8845 11.0 9500 0.8420 0.6032
0.9799 11.11 9600 0.8888 0.6028
0.977 11.23 9700 0.8922 0.6046
0.9392 11.34 9800 0.8611 0.5955
0.9547 11.46 9900 0.8472 0.5885
0.9546 11.57 10000 0.8656 0.5942
0.9166 11.69 10100 0.8665 0.5987
0.9515 11.81 10200 0.8541 0.6064
0.9418 11.92 10300 0.8384 0.5919
0.9039 12.04 10400 0.8492 0.5828
0.8965 12.15 10500 0.8454 0.5875
0.9085 12.27 10600 0.8676 0.6012
0.9113 12.38 10700 0.8536 0.5983
0.9243 12.5 10800 0.8816 0.5968
0.9469 12.62 10900 0.8526 0.5965
0.9149 12.73 11000 0.8378 0.5937
0.9198 12.85 11100 0.8462 0.5990
0.9557 12.96 11200 0.8405 0.5935
0.9775 13.08 11300 0.8657 0.5948
0.874 13.19 11400 0.8501 0.5864
0.9158 13.31 11500 0.8703 0.5879
0.8855 13.43 11600 0.8297 0.5895
0.9415 13.54 11700 0.8645 0.5887
0.8593 13.66 11800 0.8784 0.5928
0.9216 13.77 11900 0.8388 0.5816
0.9196 13.89 12000 0.8077 0.5743
0.9172 14.0 12100 0.8880 0.5897
0.9014 14.12 12200 0.8789 0.5974
0.8785 14.24 12300 0.8454 0.5726
0.8721 14.35 12400 0.8427 0.5672
0.8966 14.47 12500 0.8278 0.5709
0.8975 14.58 12600 0.8523 0.5813
0.8921 14.7 12700 0.8126 0.5697
0.8766 14.81 12800 0.8205 0.5665
0.8852 14.93 12900 0.8418 0.5640
0.8276 15.05 13000 0.8332 0.5785
0.851 15.16 13100 0.8144 0.5731
0.8916 15.28 13200 0.8452 0.5632
0.8623 15.39 13300 0.8398 0.5682
0.8932 15.51 13400 0.8249 0.5667
0.8442 15.62 13500 0.8300 0.5646
0.8592 15.74 13600 0.8153 0.5584
0.9012 15.86 13700 0.8109 0.5651
0.8537 15.97 13800 0.8101 0.5677
0.8812 16.09 13900 0.8057 0.5597
0.853 16.2 14000 0.8124 0.5645
0.8691 16.32 14100 0.8086 0.5621
0.844 16.44 14200 0.8074 0.5550
0.8612 16.55 14300 0.8361 0.5654
0.8315 16.67 14400 0.8216 0.5582
0.8665 16.78 14500 0.8307 0.5596
0.8487 16.9 14600 0.7991 0.5577
0.8567 17.01 14700 0.8181 0.5535
0.8288 17.13 14800 0.8308 0.5552
0.8199 17.25 14900 0.8383 0.5639
0.8264 17.36 15000 0.8355 0.5626
0.8374 17.48 15100 0.8925 0.5725
0.8549 17.59 15200 0.8190 0.5649
0.8164 17.71 15300 0.8422 0.5585
0.8575 17.82 15400 0.8195 0.5498
0.8553 17.94 15500 0.8355 0.5610
0.8234 18.06 15600 0.8214 0.5470
0.8293 18.17 15700 0.8215 0.5511
0.7996 18.29 15800 0.8075 0.5461
0.8468 18.4 15900 0.8182 0.5487
0.8138 18.52 16000 0.8309 0.5627
0.805 18.63 16100 0.8103 0.5575
0.8329 18.75 16200 0.8094 0.5402
0.8483 18.87 16300 0.8116 0.5428
0.8222 18.98 16400 0.8336 0.5413
0.8294 19.1 16500 0.8040 0.5419
0.8043 19.21 16600 0.7930 0.5427
0.8216 19.33 16700 0.8451 0.5574
0.7831 19.44 16800 0.8462 0.5546
0.8069 19.56 16900 0.8230 0.5481
0.8022 19.68 17000 0.7943 0.5441
0.8143 19.79 17100 0.8110 0.5406
0.8018 19.91 17200 0.8033 0.5366
0.7918 20.02 17300 0.8030 0.5344
0.8177 20.14 17400 0.8017 0.5377
0.7763 20.25 17500 0.8152 0.5411
0.8226 20.37 17600 0.8176 0.5403
0.7929 20.49 17700 0.8153 0.5406
0.7727 20.6 17800 0.8128 0.5378
0.8095 20.72 17900 0.8041 0.5493
0.7799 20.83 18000 0.8276 0.5411
0.8088 20.95 18100 0.8295 0.5426
0.7682 21.06 18200 0.8031 0.5349
0.7972 21.18 18300 0.8072 0.5269
0.7694 21.3 18400 0.8043 0.5270
0.7826 21.41 18500 0.8324 0.5343
0.7667 21.53 18600 0.8143 0.5316
0.7569 21.64 18700 0.8142 0.5347
0.7939 21.76 18800 0.8043 0.5338
0.7685 21.88 18900 0.8080 0.5408
0.7667 21.99 19000 0.8021 0.5308
0.7993 22.11 19100 0.8081 0.5393
0.7205 22.22 19200 0.8173 0.5408
0.7751 22.34 19300 0.8017 0.5267
0.7477 22.45 19400 0.8166 0.5382
0.7769 22.57 19500 0.8138 0.5341
0.7766 22.69 19600 0.8235 0.5349
0.7494 22.8 19700 0.8135 0.5304
0.8126 22.92 19800 0.8116 0.5317
0.7985 23.03 19900 0.8099 0.5303
0.7698 23.15 20000 0.8009 0.5323
0.7719 23.26 20100 0.8241 0.5411
0.7761 23.38 20200 0.8154 0.5289
0.7523 23.5 20300 0.7987 0.5285
0.7292 23.61 20400 0.7981 0.5255
0.7497 23.73 20500 0.8062 0.5180
0.7469 23.84 20600 0.7998 0.5287
0.7592 23.96 20700 0.8060 0.5265
0.7454 24.07 20800 0.8077 0.5296
0.7512 24.19 20900 0.8025 0.5277
0.7107 24.31 21000 0.8019 0.5284
0.7251 24.42 21100 0.7989 0.5248
0.7594 24.54 21200 0.8122 0.5249
0.7689 24.65 21300 0.8044 0.5225
0.7655 24.77 21400 0.8296 0.5247
0.7278 24.88 21500 0.8119 0.5245
0.7731 25.0 21600 0.7953 0.5222
0.7447 25.12 21700 0.8010 0.5208
0.7226 25.23 21800 0.8155 0.5212
0.7278 25.35 21900 0.8084 0.5229
0.7221 25.46 22000 0.8268 0.5277
0.739 25.58 22100 0.8054 0.5233
0.7657 25.69 22200 0.8004 0.5192
0.7624 25.81 22300 0.8081 0.5215
0.7264 25.93 22400 0.8069 0.5210
0.7596 26.04 22500 0.8084 0.5225
0.706 26.16 22600 0.8108 0.5195
0.7472 26.27 22700 0.8026 0.5159
0.7441 26.39 22800 0.8052 0.5158
0.7447 26.5 22900 0.8117 0.5185
0.6842 26.62 23000 0.7987 0.5139
0.7491 26.74 23100 0.7985 0.5140
0.7017 26.85 23200 0.8118 0.5158
0.7251 26.97 23300 0.8076 0.5172
0.7659 27.08 23400 0.8078 0.5160
0.7246 27.2 23500 0.8105 0.5159
0.7258 27.31 23600 0.8139 0.5183
0.7133 27.43 23700 0.8158 0.5150
0.6811 27.55 23800 0.8186 0.5145
0.7248 27.66 23900 0.7984 0.5108
0.7335 27.78 24000 0.8076 0.5162
0.6924 27.89 24100 0.8034 0.5129
0.7464 28.01 24200 0.8088 0.5131
0.7253 28.12 24300 0.8072 0.5119
0.7401 28.24 24400 0.8094 0.5125
0.7092 28.36 24500 0.8070 0.5153
0.7352 28.47 24600 0.8053 0.5128
0.7121 28.59 24700 0.8034 0.5139
0.6904 28.7 24800 0.8108 0.5136
0.7099 28.82 24900 0.8095 0.5141
0.6814 28.94 25000 0.8127 0.5167
0.6657 29.05 25100 0.8089 0.5139
0.721 29.17 25200 0.8117 0.5163
0.6886 29.28 25300 0.8120 0.5154
0.6974 29.4 25400 0.8087 0.5143
0.7067 29.51 25500 0.8102 0.5162
0.7311 29.63 25600 0.8119 0.5157
0.697 29.75 25700 0.8097 0.5145
0.7126 29.86 25800 0.8098 0.5139
0.7021 29.98 25900 0.8096 0.5141

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.1.0.dev20230523+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tirthankar/mms_kas_speed1

Finetuned
(239)
this model