Built with Axolotl

See axolotl config

axolotl version: 0.4.1

# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess ms-creative.yml
# accelerate launch -m axolotl.cli.train ms-creative.yml
# python -m axolotl.cli.merge_lora ms-creative.yml
# huggingface-cli upload Columbidae/ms-type2-creative train-workspace/merged . --private

# Model
base_model: unsloth/Mistral-Small-Instruct-2409
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false
bf16: true
fp16:
tf32: false
flash_attention: true
special_tokens:

# Output
output_dir: ./ms-creative
hub_model_id: BeaverAI/mistral-small-dampf-qlora
hub_strategy: "checkpoint"
resume_from_checkpoint:
saves_per_epoch: 5

# Data
sequence_len: 16384 # fits
min_sample_len: 128
dataset_prepared_path: last_run_prepared
datasets:
  - path: Dampfinchen/Creative_Writing_Multiturn
    type: custommistralv3
warmup_steps: 20
shuffle_merged_datasets: true
sample_packing: true
pad_to_sequence_len: true

# Batching
num_epochs: 1
gradient_accumulation_steps: 1
micro_batch_size: 5
eval_batch_size: 5

# Evaluation
val_set_size: 100
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false

save_safetensors: true

mlflow_tracking_uri: http://127.0.0.1:7860
mlflow_experiment_name: Default
# WandB
#wandb_project: Mistral-Small-Creative-Multiturn
#wandb_entity:

gradient_checkpointing: 'unsloth'
gradient_checkpointing_kwargs:
   use_reentrant: true

unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true

# LoRA
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 128
lora_dropout: 0.125
lora_target_linear: 
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:

# Optimizer
optimizer: paged_adamw_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005
cosine_min_lr_ratio: 0.1
weight_decay: 0.01
max_grad_norm: 1.0

# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
deepspeed: deepspeed_configs/zero3.json # previously blank
fsdp:
fsdp_config:

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

mistral-small-dampf-qlora

This model is a fine-tuned version of unsloth/Mistral-Small-Instruct-2409 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • total_train_batch_size: 30
  • total_eval_batch_size: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.477 0.0065 1 1.3211
1.2338 0.2065 32 1.1156
1.1973 0.4129 64 1.0707
1.301 0.6194 96 1.0402
1.1063 0.8258 128 1.0232

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.3.1
  • Datasets 2.21.0
  • Tokenizers 0.20.0
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ToastyPigeon/mistral-small-dampf-qlora