Built with Axolotl

See axolotl config

axolotl version: 0.6.0

# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# git checkout 844331005c1ef45430ff26b9f42f757dce6ee66a
# pip3 install packaging ninja huggingface_hub[cli]
# pip3 install -e '.[flash-attn,deepspeed]'
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess new-ms-rp-only-test.yml
# accelerate launch -m axolotl.cli.train new-ms-rp-only-test.yml
# python -m axolotl.cli.merge_lora new-ms-rp-only-test.yml --lora_on_cpu
# huggingface-cli upload ToastyPigeon/ms-rp-only-qlora-TEST train-workspace/merged . --exclude "*.md"

# git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && pip3 install packaging ninja huggingface_hub[cli] && pip3 install -e '.[flash-attn,deepspeed]' && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key

# Model
base_model: mistralai/Mistral-Small-24B-Instruct-2501
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false
bf16: auto
fp16:
tf32: false
flash_attention: true
special_tokens:

# Output
output_dir: ./train-workspace
hub_model_id: ToastyPigeon/new-ms-rp-test-ws
hub_strategy: "checkpoint"
resume_from_checkpoint:
saves_per_epoch: 1

# Data
sequence_len: 4096 # fits
min_sample_len: 128
dataset_prepared_path: last_run_prepared
datasets:
  - path: ToastyPigeon/some-rp-extended
    type: chat_template
    field_messages: conversations
    message_field_role: from
    message_field_content: value
warmup_steps: 10
shuffle_merged_datasets: true
sample_packing: true
pad_to_sequence_len: true
chat_template: jinja
chat_template_jinja: "{%- set default_system_message = \"You are an unbiased, unfiltered, and unaligned AI.\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n    {%- set system_message = messages[0]['content'] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set system_message = default_system_message %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n    {%- if message['role'] == 'user' %}\n        {{- '[INST]' + message['content'] + '[/INST]' }}\n    {%- elif message['role'] == 'system' %}\n        {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n    {%- elif message['role'] == 'assistant' %}\n        {{- message['content'] + eos_token }}\n    {%- else %}\n        {{- raise_exception('Only user, system and assistant roles are supported!') }}\n    {%- endif %}\n{%- endfor %}"

# Batching
num_epochs: 1
gradient_accumulation_steps: 4
micro_batch_size: 1
eval_batch_size: 1

# Evaluation
val_set_size: 40
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false

save_safetensors: true

# WandB
wandb_project: MS-Rp-Test
#wandb_entity:

gradient_checkpointing: 'unsloth'
#gradient_checkpointing_kwargs:
#  use_reentrant: false

unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true

# LoRA
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.25
lora_target_linear: 
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:

# Optimizer
optimizer: paged_ademamix_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-5
cosine_min_lr_ratio: 0.5
weight_decay: 0.01
max_grad_norm: 1.0

# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank
fsdp:
fsdp_config:

plugins:
  - axolotl.integrations.liger.LigerPlugin
#  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#cut_cross_entropy: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true

gc_steps: 10
seed: 69

new-ms-rp-test-ws

This model is a fine-tuned version of mistralai/Mistral-Small-24B-Instruct-2501 on the ToastyPigeon/some-rp-extended dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 69
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
2.4594 0.0078 1 2.2498
2.1355 0.2031 26 2.1281
2.1069 0.4062 52 2.1199
1.8512 0.6094 78 2.1148
2.0247 0.8125 104 2.1127

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
28
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ToastyPigeon/new-ms-rp-test-ws