multibert_1210seed7

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5019
  • Precisions: 0.8874
  • Recall: 0.7790
  • F-measure: 0.8105
  • Accuracy: 0.9107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 7
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.6032 1.0 236 0.4733 0.8608 0.6507 0.6853 0.8645
0.3527 2.0 472 0.3790 0.8098 0.7259 0.7383 0.8826
0.2198 3.0 708 0.4191 0.8209 0.7632 0.7816 0.8936
0.1359 4.0 944 0.4433 0.8430 0.7344 0.7590 0.8924
0.0862 5.0 1180 0.5207 0.8067 0.7697 0.7838 0.8947
0.0637 6.0 1416 0.5019 0.8874 0.7790 0.8105 0.9107
0.0454 7.0 1652 0.5048 0.8049 0.8135 0.8070 0.9058
0.0318 8.0 1888 0.5969 0.8135 0.7710 0.7845 0.9003
0.024 9.0 2124 0.6388 0.8295 0.7999 0.8057 0.9048
0.0138 10.0 2360 0.6448 0.8304 0.7727 0.7949 0.9033
0.0084 11.0 2596 0.6589 0.8216 0.7756 0.7936 0.9017
0.0091 12.0 2832 0.6471 0.8340 0.7683 0.7952 0.9045
0.005 13.0 3068 0.6817 0.8600 0.7662 0.8034 0.9073
0.0045 14.0 3304 0.6774 0.8397 0.7680 0.7976 0.9077

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tommert25/multibert_1210seed7

Finetuned
(1632)
this model