Tommert25's picture
End of training
06ec5fa
|
raw
history blame
2.83 kB
metadata
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: multibert_seed33_1311
    results: []

multibert_seed33_1311

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4996
  • Precisions: 0.8590
  • Recall: 0.8170
  • F-measure: 0.8353
  • Accuracy: 0.9359

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 33
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.4674 1.0 236 0.2914 0.8891 0.6852 0.7119 0.9125
0.2266 2.0 472 0.2489 0.8410 0.7811 0.8044 0.9294
0.1394 3.0 708 0.2650 0.8611 0.7777 0.7929 0.9296
0.0878 4.0 944 0.2721 0.8608 0.8165 0.8324 0.9373
0.06 5.0 1180 0.3164 0.8457 0.7877 0.8105 0.9342
0.0378 6.0 1416 0.3793 0.8788 0.7972 0.8309 0.9335
0.0285 7.0 1652 0.3807 0.8665 0.7905 0.8233 0.9299
0.0153 8.0 1888 0.4636 0.8555 0.7855 0.8152 0.9303
0.0115 9.0 2124 0.4649 0.8336 0.8135 0.8190 0.9337
0.0064 10.0 2360 0.5120 0.8522 0.8010 0.8219 0.9325
0.0052 11.0 2596 0.5008 0.8616 0.8034 0.8288 0.9337
0.0038 12.0 2832 0.4807 0.8616 0.8133 0.8346 0.9354
0.0016 13.0 3068 0.4995 0.8514 0.8186 0.8322 0.9359
0.0012 14.0 3304 0.4996 0.8590 0.8170 0.8353 0.9359

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1