Tommert25's picture
End of training
907d18e
metadata
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: multibert_seed36_1311
    results: []

multibert_seed36_1311

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4419
  • Precisions: 0.8943
  • Recall: 0.8153
  • F-measure: 0.8493
  • Accuracy: 0.9385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 36
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.4359 1.0 236 0.3021 0.8474 0.6948 0.7163 0.9077
0.2293 2.0 472 0.2484 0.8612 0.7522 0.7842 0.9258
0.1373 3.0 708 0.3033 0.7969 0.7892 0.7776 0.9250
0.0881 4.0 944 0.3218 0.8153 0.8103 0.8094 0.9299
0.0612 5.0 1180 0.3208 0.8357 0.8151 0.8225 0.9315
0.0378 6.0 1416 0.3553 0.8919 0.8173 0.8493 0.9405
0.0283 7.0 1652 0.4053 0.8575 0.8070 0.8270 0.9364
0.0229 8.0 1888 0.3789 0.8639 0.8236 0.8398 0.9354
0.0149 9.0 2124 0.4101 0.8856 0.8070 0.8387 0.9376
0.0073 10.0 2360 0.4419 0.8943 0.8153 0.8493 0.9385
0.0036 11.0 2596 0.4621 0.8882 0.8045 0.8392 0.9371
0.0045 12.0 2832 0.4494 0.8913 0.8093 0.8440 0.9383
0.0034 13.0 3068 0.4420 0.8795 0.8152 0.8422 0.9395
0.0014 14.0 3304 0.4494 0.8838 0.8100 0.8404 0.9390

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1