📈 CFGPT: Chinese Financial Assistant with Large Language Model (CFGPT1-sft-7b-LoRA)

Introduction

We introduce CFGPT, an open-source language model trained by firstly further pretraining general LLMs on collected and cleaned Chinese finance text data (CFData-pt), including financial domain-specific data (announcement, finance articles, finance exams, finance news, finance research papers) and general data (Wikipedia), and secondly fine-tuning with knowledge-intensive instruction tuning data (CFData-sft). As for preliminary evaluation, we use CFBenchmark-Basic. CFGPT outperforms the baselines on objective and subjective tasks compared to several baseline models with similar parameters.

In this repository, we will share the supervised finetuning LoRA model.

How to Use

1. Prepare the code and the environment

Clone CFGPT repository, create a Python environment, and activate it via the following command

git clone https://github.com/TongjiFinLab/CFGPT.git
cd CFGPT
conda create -n env_name python=3.10   
source activate env_name 
pip install -r requirements.txt

2. Use CFGPT1-sft-7B-LoRA

from transformers import AutoModel, AutoTokenizer
from peft import PeftModel
base_model = 'TongjiFinLab/CFGPT1-pt-7B'
lora_weights = 'TongjiFinLab/CFGPT1-sft-7B-LoRA'
device_map = 'cuda:0'
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
model = AutoModel.from_pretrained(
    base_model,
    trust_remote_code=True,
    device_map=device_map,
    torch_dtype=torch.bfloat16
)
model = PeftModel.from_pretrained(
    model,
    lora_weights,
    device_map=device_map,
)
model = model.eval()
inputs = tokenizer("""你是一名金融从业者,请对这篇新闻进行情感分析。请从(中性、积极、消极)中选取答案。新闻内容:挖贝快讯:特步国际发布2023年第二季度中国内地业务营运状况,披露截至2023年6月30日止3个月零售销售实现高双位数同比增长(包括线上线下渠道),零售折扣水平约七五折。同时,2022年7月MSCI首次予以特步ESG评级,一年后评级表现即迎来提升。明晟MSCI上调特步ESG评级,由“BB”升至“BBB”。\n回答:""", return_tensors='pt').to('cuda:4')
pred = model.generate(**inputs, max_new_tokens=64, do_sample=False, repetition_penalty=1.0)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True).split('回答:')[1])

简介

CFGPT是一个开源的语言模型,首先通过在收集和清理的中国金融文本数据(CFData-pt)上进行继续预训练,包括金融领域特定数据(公告、金融文章、金融考试、金融新闻、金融研究论文)和通用数据(维基百科),然后使用知识密集的指导调整数据(CFData-sft)进行微调。 我们使用CFBenchmark-Basic进行初步评估。与几个具有相似参数的基线模型相比,CFGPT在识别,分类和生成任务上表现优越。

在这个仓库中,我们将分享以下LoRA有监督微调的模型。

如何使用

1. 准备代码和环境

克隆CFGPT的仓库,创建一个Python环境,并通过以下命令激活它:

git clone https://github.com/TongjiFinLab/CFGPT.git
cd CFGPT
conda create -n env_name python=3.10   
source activate env_name 
pip install -r requirements.txt

2. 使用 CFGPT1-sft-7B-LoRA

from transformers import AutoModel, AutoTokenizer
from peft import PeftModel
base_model = 'TongjiFinLab/CFGPT1-pt-7B'
lora_weights = 'TongjiFinLab/CFGPT1-sft-7B-LoRA'
device_map = 'cuda:0'
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
model = AutoModel.from_pretrained(
    base_model,
    trust_remote_code=True,
    device_map=device_map,
    torch_dtype=torch.bfloat16
)
model = PeftModel.from_pretrained(
    model,
    lora_weights,
    device_map=device_map,
)
model = model.eval()
inputs = tokenizer("""你是一名金融从业者,请对这篇新闻进行情感分析。请从(中性、积极、消极)中选取答案。新闻内容:挖贝快讯:特步国际发布2023年第二季度中国内地业务营运状况,披露截至2023年6月30日止3个月零售销售实现高双位数同比增长(包括线上线下渠道),零售折扣水平约七五折。同时,2022年7月MSCI首次予以特步ESG评级,一年后评级表现即迎来提升。明晟MSCI上调特步ESG评级,由“BB”升至“BBB”。\n回答:""", return_tensors='pt').to(device_map)
pred = model.generate(**inputs, max_new_tokens=64, do_sample=False, repetition_penalty=1.0)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True).split('回答:')[1])
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .