hilco's picture
Finished training.
10258ba verified
metadata
library_name: peft
tags:
  - parquet
  - text-classification
datasets:
  - tweet_eval
metrics:
  - accuracy
base_model: DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-4
model-index:
  - name: >-
      DoyyingFace_bert-asian-hate-tweets-asian-unclean-freeze-4-finetuned-lora-tweet_eval_irony
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: irony
          split: validation
          args: irony
        metrics:
          - type: accuracy
            value: 0.6596858638743456
            name: accuracy

DoyyingFace_bert-asian-hate-tweets-asian-unclean-freeze-4-finetuned-lora-tweet_eval_irony

This model is a fine-tuned version of DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-4 on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • accuracy: 0.6597

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

accuracy train_loss epoch
0.5225 None 0
0.5257 0.7630 0
0.5874 0.6791 1
0.6168 0.6517 2
0.6325 0.6338 3
0.6314 0.6022 4
0.6325 0.5884 5
0.6513 0.5749 6
0.6597 0.5636 7

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.15.2