hilco's picture
Finished training.
b909317 verified
|
raw
history blame
2.16 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - parquet
  - text-classification
datasets:
  - tweet_eval
metrics:
  - accuracy
base_model: Giyaseddin/distilroberta-base-finetuned-short-answer-assessment
model-index:
  - name: >-
      Giyaseddin_distilroberta-base-finetuned-short-answer-assessment-finetuned-lora-tweet_eval_irony
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: irony
          split: validation
          args: irony
        metrics:
          - type: accuracy
            value: 0.7015706806282722
            name: accuracy

Giyaseddin_distilroberta-base-finetuned-short-answer-assessment-finetuned-lora-tweet_eval_irony

This model is a fine-tuned version of Giyaseddin/distilroberta-base-finetuned-short-answer-assessment on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • accuracy: 0.7016

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

accuracy train_loss epoch
0.4743 None 0
0.6188 0.7149 0
0.6262 0.6574 1
0.6660 0.6179 2
0.6932 0.5705 3
0.6859 0.5397 4
0.6796 0.5244 5
0.6953 0.5155 6
0.7016 0.4939 7

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.15.2