hilco's picture
Finished training.
ab34890 verified
|
raw
history blame
2.14 kB
metadata
library_name: peft
tags:
  - parquet
  - text-classification
datasets:
  - tweet_eval
metrics:
  - accuracy
base_model: Splend1dchan/bert-base-uncased-slue-goldtrascription-e3-lr1e-4
model-index:
  - name: >-
      Splend1dchan_bert-base-uncased-slue-goldtrascription-e3-lr1e-4-finetuned-lora-tweet_eval_irony
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: irony
          split: validation
          args: irony
        metrics:
          - type: accuracy
            value: 0.6869109947643979
            name: accuracy

Splend1dchan_bert-base-uncased-slue-goldtrascription-e3-lr1e-4-finetuned-lora-tweet_eval_irony

This model is a fine-tuned version of Splend1dchan/bert-base-uncased-slue-goldtrascription-e3-lr1e-4 on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • accuracy: 0.6869

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

accuracy train_loss epoch
0.5152 None 0
0.6230 0.6797 0
0.6251 0.6591 1
0.6419 0.6296 2
0.6618 0.5978 3
0.6817 0.5772 4
0.6743 0.5497 5
0.6827 0.5394 6
0.6869 0.5343 7

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.15.2