metadata
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: aviator-neural/bert-base-uncased-sst2
model-index:
- name: aviator-neural_bert-base-uncased-sst2-finetuned-lora-tweet_eval_emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: emotion
split: validation
args: emotion
metrics:
- type: accuracy
value: 0.5935828877005348
name: accuracy
aviator-neural_bert-base-uncased-sst2-finetuned-lora-tweet_eval_emotion
This model is a fine-tuned version of aviator-neural/bert-base-uncased-sst2 on the tweet_eval dataset. It achieves the following results on the evaluation set:
- accuracy: 0.5936
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
accuracy | train_loss | epoch |
---|---|---|
0.1791 | None | 0 |
0.5588 | 1.1340 | 0 |
0.5775 | 1.0738 | 1 |
0.5829 | 1.0354 | 2 |
0.5936 | 1.0207 | 3 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2