hilco's picture
Finished training.
3e78b86 verified
|
raw
history blame
1.88 kB
---
license: apache-2.0
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: dapang/distilroberta-base-mic-sym
model-index:
- name: dapang_distilroberta-base-mic-sym-finetuned-lora-tweet_eval_sentiment
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: sentiment
split: validation
args: sentiment
metrics:
- type: accuracy
value: 0.7155
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dapang_distilroberta-base-mic-sym-finetuned-lora-tweet_eval_sentiment
This model is a fine-tuned version of [dapang/distilroberta-base-mic-sym](https://huggingface.co/dapang/distilroberta-base-mic-sym) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.7155
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.1705 | None | 0 |
| 0.7 | 0.7062 | 0 |
| 0.713 | 0.6484 | 1 |
| 0.715 | 0.6303 | 2 |
| 0.7155 | 0.6217 | 3 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2