hilco's picture
Finished training.
80ea900 verified
---
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: ishan/bert-base-uncased-mnli
model-index:
- name: ishan_bert-base-uncased-mnli-finetuned-lora-tweet_eval_irony
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: irony
split: validation
args: irony
metrics:
- type: accuracy
value: 0.6921465968586388
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ishan_bert-base-uncased-mnli-finetuned-lora-tweet_eval_irony
This model is a fine-tuned version of [ishan/bert-base-uncased-mnli](https://huggingface.co/ishan/bert-base-uncased-mnli) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.6921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.4607 | None | 0 |
| 0.5927 | 0.6880 | 0 |
| 0.6168 | 0.6484 | 1 |
| 0.6524 | 0.6051 | 2 |
| 0.6628 | 0.5782 | 3 |
| 0.6723 | 0.5502 | 4 |
| 0.6859 | 0.5350 | 5 |
| 0.6806 | 0.5306 | 6 |
| 0.6921 | 0.5219 | 7 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2