hilco's picture
Finished training.
433cd04 verified
|
raw
history blame
2.14 kB
---
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls
model-index:
- name: liangyuant_distilbert-base-uncased-finetuned-num200-450-405cls-finetuned-lora-tweet_eval_irony
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: irony
split: validation
args: irony
metrics:
- type: accuracy
value: 0.650261780104712
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# liangyuant_distilbert-base-uncased-finetuned-num200-450-405cls-finetuned-lora-tweet_eval_irony
This model is a fine-tuned version of [liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls](https://huggingface.co/liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.6503
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.4775 | None | 0 |
| 0.5969 | 0.7710 | 0 |
| 0.5937 | 0.6753 | 1 |
| 0.6230 | 0.6362 | 2 |
| 0.6335 | 0.6058 | 3 |
| 0.6387 | 0.5709 | 4 |
| 0.6262 | 0.5502 | 5 |
| 0.6440 | 0.5286 | 6 |
| 0.6503 | 0.5149 | 7 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2