Edit model card

oferweintraub_bert-base-finance-sentiment-noisy-search-finetuned-lora-tweet_eval_irony

This model is a fine-tuned version of oferweintraub/bert-base-finance-sentiment-noisy-search on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • accuracy: 0.6576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

accuracy train_loss epoch
0.5162 None 0
0.5738 0.6967 0
0.5435 0.6857 1
0.5958 0.6657 2
0.6325 0.6477 3
0.6461 0.6235 4
0.6534 0.6148 5
0.6398 0.6032 6
0.6576 0.5911 7

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
4
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Model tree for TransferGraph/oferweintraub_bert-base-finance-sentiment-noisy-search-finetuned-lora-tweet_eval_irony

Dataset used to train TransferGraph/oferweintraub_bert-base-finance-sentiment-noisy-search-finetuned-lora-tweet_eval_irony

Evaluation results