Triangle104's picture
Upload README.md with huggingface_hub
5b4dbac verified
---
language:
- en
license: llama3.1
library_name: transformers
tags:
- mergekit
- merge
- shining-valiant
- shining-valiant-2
- cobalt
- plum
- valiant
- valiant-labs
- llama
- llama-3.1
- llama-3.1-instruct
- llama-3.1-instruct-8b
- llama-3
- llama-3-instruct
- llama-3-instruct-8b
- 8b
- math
- math-instruct
- science
- physics
- biology
- chemistry
- compsci
- computer-science
- engineering
- technical
- conversational
- chat
- instruct
- llama-cpp
- gguf-my-repo
base_model: sequelbox/Llama3.1-8B-PlumMath
pipeline_tag: text-generation
model_type: llama
model-index:
- name: sequelbox/Llama3.1-8B-PlumMath
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-Shot)
type: Winogrande
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.38
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MathQA (5-Shot)
type: MathQA
args:
num_few_shot: 5
metrics:
- type: acc
value: 40.27
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 22.42
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 16.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 3.93
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.06
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.98
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 21.95
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath
name: Open LLM Leaderboard
---
# Triangle104/Llama3.1-8B-PlumMath-Q8_0-GGUF
This model was converted to GGUF format from [`sequelbox/Llama3.1-8B-PlumMath`](https://huggingface.co/sequelbox/Llama3.1-8B-PlumMath) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/sequelbox/Llama3.1-8B-PlumMath) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Llama3.1-8B-PlumMath-Q8_0-GGUF --hf-file llama3.1-8b-plummath-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Llama3.1-8B-PlumMath-Q8_0-GGUF --hf-file llama3.1-8b-plummath-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Llama3.1-8B-PlumMath-Q8_0-GGUF --hf-file llama3.1-8b-plummath-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Llama3.1-8B-PlumMath-Q8_0-GGUF --hf-file llama3.1-8b-plummath-q8_0.gguf -c 2048
```