Triangle104's picture
Update README.md
5c8a721 verified
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
base_model: SicariusSicariiStuff/Phi-3.5-mini-instruct_Uncensored
---
# Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_M-GGUF
This model was converted to GGUF format from [`SicariusSicariiStuff/Phi-3.5-mini-instruct_Uncensored`](https://huggingface.co/SicariusSicariiStuff/Phi-3.5-mini-instruct_Uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/SicariusSicariiStuff/Phi-3.5-mini-instruct_Uncensored) for more details on the model.
---
Model details:
-
This is the basic model, no additional data was used except my uncensoring protocol.
Model Details
Censorship level: Low - Medium
6.4 / 10 (10 completely uncensored)
UGI score:
UGI Score
Phi-3.5-mini-instruct_Uncensored is available at the following quantizations:
Original: FP16
GGUF: Static Quants | iMatrix_GGUF-bartowski | iMatrix_GGUF-mradermacher
EXL2: 3.0 bpw | 4.0 bpw | 5.0 bpw | 6.0 bpw | 7.0 bpw | 8.0 bpw
Specialized: FP8
Mobile (ARM): Q4_0_X_X
Support
GPUs too expensive
My Ko-fi page ALL donations will go for research resources and compute, every bit is appreciated πŸ™πŸ»
Other stuff
Blog and updates Some updates, some rambles, sort of a mix between a diary and a blog.
LLAMA-3_8B_Unaligned The grand project that started it all.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_M-GGUF --hf-file phi-3.5-mini-instruct_uncensored-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_M-GGUF --hf-file phi-3.5-mini-instruct_uncensored-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_M-GGUF --hf-file phi-3.5-mini-instruct_uncensored-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_M-GGUF --hf-file phi-3.5-mini-instruct_uncensored-q5_k_m.gguf -c 2048
```