|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
base_model: |
|
- HumanLLMs/Human-Like-Qwen2.5-7B-Instruct |
|
- bunnycore/Qwen-2.5-7b-rp-lora |
|
model-index: |
|
- name: Q2.5-Humane-RP |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 44.12 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 37.65 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 30.44 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 9.17 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 15.33 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 38.8 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP |
|
name: Open LLM Leaderboard |
|
--- |
|
# merge |
|
|
|
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). |
|
|
|
## Merge Details |
|
|
|
Quant: https://huggingface.co/Triangle104/Q2.5-Humane-RP-Q4_K_M-GGUF |
|
|
|
### Merge Method |
|
|
|
This model was merged using the passthrough merge method using [HumanLLMs/Human-Like-Qwen2.5-7B-Instruct](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) + [bunnycore/Qwen-2.5-7b-rp-lora](https://huggingface.co/bunnycore/Qwen-2.5-7b-rp-lora) as a base. |
|
|
|
### Models Merged |
|
|
|
The following models were included in the merge: |
|
|
|
|
|
### Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
base_model: HumanLLMs/Human-Like-Qwen2.5-7B-Instruct+bunnycore/Qwen-2.5-7b-rp-lora |
|
dtype: bfloat16 |
|
merge_method: passthrough |
|
models: |
|
- model: HumanLLMs/Human-Like-Qwen2.5-7B-Instruct+bunnycore/Qwen-2.5-7b-rp-lora |
|
|
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Triangle104__Q2.5-Humane-RP-details) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |29.25| |
|
|IFEval (0-Shot) |44.12| |
|
|BBH (3-Shot) |37.65| |
|
|MATH Lvl 5 (4-Shot)|30.44| |
|
|GPQA (0-shot) | 9.17| |
|
|MuSR (0-shot) |15.33| |
|
|MMLU-PRO (5-shot) |38.80| |
|
|
|
|