license: apache-2.0
library_name: transformers
base_model: nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
tags:
- llama-cpp
- gguf-my-repo
model-index:
- name: Qwen2.5-Gutenberg-Doppel-14B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.91
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 48.24
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.07
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.02
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.57
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
name: Open LLM Leaderboard
Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q5_K_S-GGUF
This model was converted to GGUF format from nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
Qwen/Qwen2.5-14B-Instruct finetuned on jondurbin/gutenberg-dpo-v0.1 and nbeerbower/gutenberg2-dpo.
Method ORPO tuned with 4x A40 for 3 epochs.
Thank you @ParasiticRogue for sponsoring.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q5_K_S-GGUF --hf-file qwen2.5-gutenberg-doppel-14b-q5_k_s.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q5_K_S-GGUF --hf-file qwen2.5-gutenberg-doppel-14b-q5_k_s.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q5_K_S-GGUF --hf-file qwen2.5-gutenberg-doppel-14b-q5_k_s.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q5_K_S-GGUF --hf-file qwen2.5-gutenberg-doppel-14b-q5_k_s.gguf -c 2048