metadata
language:
- en
license: mit
datasets:
- UCLA-AGI/SPIN_iter2
pipeline_tag: text-generation
model-index:
- name: test-test
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.47
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.82
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.48
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.75
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.95
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.75
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test
name: Open LLM Leaderboard
Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (https://arxiv.org/abs/2401.01335)
zephyr-7b-sft-full-spin-iter2
This model is a self-play fine-tuned model at iteration 2 from alignment-handbook/zephyr-7b-sft-full using synthetic data based on on the HuggingFaceH4/ultrachat_200k dataset.
Model Details
Model Description
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: MIT
- Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- optimizer: RMSProp
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.54 |
ARC (25-shot) | 66.47 |
HellaSwag (10-shot) | 85.82 |
MMLU (5-shot) | 61.48 |
TruthfulQA (0-shot) | 57.75 |
Winogrande (5-shot) | 76.95 |
GSM8K (5-shot) | 32.75 |
Citation
@misc{chen2024selfplay,
title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models},
author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu},
year={2024},
eprint={2401.01335},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.54 |
AI2 Reasoning Challenge (25-Shot) | 66.47 |
HellaSwag (10-Shot) | 85.82 |
MMLU (5-Shot) | 61.48 |
TruthfulQA (0-shot) | 57.75 |
Winogrande (5-shot) | 76.95 |
GSM8k (5-shot) | 32.75 |