Object Detection
YOLO
YOLOv9

About ULTIMA-YOLO models

This is a part of ULTIMA project.

ULTIMA is Uma Musume Labeled Text-Image Multimodal Alignment.

ULTIMA-YOLOv9 model is a facial detection model for Uma Musumes in illustrations and based on yolov9-e and ULTIMA-YOLO dataset

This is the model repository for ULTIMA-YOLOv9, containing the following checkpoints:

  • YOLO9-E

How to Use

Clone YOLOv9 repository.

git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9

Download the weights using hf_hub_download and use the loading function in helpers of YOLOv9.

from huggingface_hub import hf_hub_download 
hf_hub_download("UmaDiffusion/ULTIMA-YOLOv9", filename="ultima_yolov9-e.pt", local_dir="./")

Load the model.

# make sure you have the following dependencies
import torch
import numpy as np
from models.common import DetectMultiBackend
from utils.general import non_max_suppression, scale_boxes
from utils.torch_utils import select_device, smart_inference_mode
from utils.augmentations import letterbox
import PIL.Image

@smart_inference_mode()
def predict(image_path, weights='ultima_yolov9-e.pt', imgsz=640, conf_thres=0.1, iou_thres=0.45):
    # Initialize
    device = select_device('0')
    model = DetectMultiBackend(weights=weights, device=device, fp16=False)
    stride, names, pt = model.stride, model.names, model.pt

    # Load image
    image = np.array(PIL.Image.open(image_path).convert("RGB"))
    img = letterbox(image, imgsz, stride=stride, auto=True)[0]
    img = img.transpose(2, 0, 1)
    img = np.ascontiguousarray(img)
    img = torch.from_numpy(img).to(device).float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    # Inference
    pred = model(img, augment=False, visualize=False)

    # Apply NMS
    pred = non_max_suppression(pred[0][0], conf_thres, iou_thres, classes=None, max_det=1000)

or use detect.py in yolov9 repo.

python ./detect.py --source [image_path] --device 0 --img 1280 --weights './ultima_yolov9-e.pt' --name ultima_yolov9_1280_detect

Training Infomation

  • Batch Size: 32
  • Resolution: 640
  • Epochs: 300, chosen best mAP
  • GPU: 1x A6000 48GB
  • Dataset: ULTIMA-YOLO

Statistics

  • Train: 3,991 images
  • Val: 399 images
Character Name # in Train # in Val Precision Recall mAP50 mAP50-95
Agnes Tachyon 187 35 0.957 0.886 0.961 0.765
Air Groove 87 12 1 0.835 0.933 0.713
Air Shakur 75 12 0.986 1 0.995 0.909
Akikawa Yayoi 25 3 1 0.693 0.995 0.648
Admire Vega 74 16 1 0.754 0.894 0.707
Agnes Digital 50 6 0.992 0.833 0.972 0.803
Anshinzawa Sasami 25 1 0.956 1 0.995 0.796
Aston Machan 55 3 1 0.726 0.995 0.912
Bamboo Memory 41 3 0.97 1 0.995 0.895
Biko Pegasus 34 3 0.972 1 0.995 0.84
Byerley Turk 43 2 0.951 1 0.995 0.855
Bitter Glace 24 0 0.888 0.875 0.944 0.776
Biwa Hayahide 52 8 0.821 1 0.995 0.846
Copano Rickey 51 5 0.969 0.667 0.864 0.69
Curren Chan 54 9 0.996 1 0.995 0.801
Cheval Grand 43 13 0.998 1 0.995 0.783
Twin Turbo 120 13 0.982 1 0.995 0.842
Daiichi Ruby 57 5 0.963 1 0.995 0.949
Darley Arabian 48 2 1 0.837 0.995 0.819
Daring Tact 62 5 0.997 1 0.995 0.841
Daitaku Helios 100 11 1 0.903 0.961 0.787
Daiwa Scarlet 114 19 0.987 1 0.995 0.707
El Condor Pasa 65 6 0.951 1 0.995 0.808
Eishin Flash 39 5 0.853 1 0.995 0.927
Fuji Kiseki 48 6 1 0.875 0.995 0.88
Fine Motion 55 7 0.989 0.875 0.906 0.71
Gold City 49 8 0.942 0.938 0.991 0.81
Gold Ship 146 16 0.858 1 0.995 0.895
Godolphin Barb 44 2 0.84 0.833 0.851 0.659
Grass Wonder 74 6 1 0.797 0.995 0.792
Hishi Akebono 39 4 0.989 1 0.995 0.766
Hishi Amazon 46 6 0.993 1 0.995 0.835
Hayakawa Tazuna 34 5 1 0.659 0.922 0.638
Hishi Miracle 52 6 0.971 0.75 0.945 0.769
Happy Meek 51 4 1 0.787 0.938 0.808
Hokko Tarumae 50 9 1 0.678 0.995 0.76
Haru Urara 69 9 0.986 0.917 0.989 0.747
Ikuno Dictus 96 12 0.873 1 0.995 0.858
Ines Fujin 41 7 0.947 1 0.995 0.898
Inari One 46 2 0.856 1 0.995 0.656
Jungle Pocket 53 6 1 0.85 0.995 0.747
King Halo 77 6 0.975 1 0.995 0.773
Kashimoto Riko 34 3 1 0.778 0.995 0.823
Kiryuin Aoi 44 4 0.997 0.895 0.929 0.712
Kitasan Black 116 19 0.974 1 0.995 0.909
K.S.Miracle 48 3 0.982 1 0.995 0.852
Katsuragi Ace 43 4 0.989 1 0.995 0.881
Kawakami Princess 50 7 0.975 1 0.995 0.841
Little Cocon 51 3 1 0.567 0.995 0.796
Light Hello 25 2 0.993 1 0.995 0.788
Mr. C.B. 91 13 1 0.659 0.995 0.703
Meisho Doto 59 7 0.988 1 0.995 0.782
Mihono Bourbon 84 13 1 0.955 0.994 0.779
Manhattan Cafe 144 32 0.876 0.884 0.967 0.797
Mejiro Ardan 58 8 0.985 0.833 0.869 0.723
Mejiro Bright 55 6 0.987 1 0.995 0.813
Mejiro Dober 56 5 0.981 0.933 0.972 0.785
Mejiro McQueen 272 30 0.98 1 0.995 0.873
Mejiro Ryan 43 7 0.998 1 0.995 0.849
Matikanefukukitaru 52 7 1 0.952 0.995 0.719
Matikanetannhauser 87 13 0.996 1 0.995 0.81
Mejiro Palmer 95 11 0.893 1 0.929 0.822
Mejiro Ramonu 52 9 0.993 1 0.995 0.748
Maruzensky 43 7 0.984 1 0.995 0.684
Marvelous Sunday 40 6 1 0.702 0.995 0.668
Nakayama Festa 47 7 0.992 1 0.995 0.829
Nice Nature 96 8 0.993 1 0.995 0.723
Narita Brian 86 13 0.827 1 0.962 0.778
Narita Taishin 55 5 0.899 0.857 0.978 0.938
Nishino Flower 48 7 0.97 1 0.995 0.72
Narita Top Road 50 9 0.988 1 0.995 0.834
Oguri Cap 94 10 0.997 0.92 0.945 0.744
Rice Shower 165 25 0.992 1 0.995 0.89
Sakura Bakushin O 55 7 1 0.949 0.995 0.795
Symboli Rudolf 157 17 0.987 0.889 0.975 0.748
Sakura Chiyono O 48 9 0.946 0.8 0.941 0.835
Seiun Sky 72 10 0.98 1 0.995 0.842
Sakura Laurel 44 6 0.944 1 0.995 0.895
Shinko Windy 46 1 0.96 1 0.995 0.949
Seeking the Pearl 34 2 0.985 1 0.995 0.844
Symboli Kris S 68 6 0.87 0.958 0.943 0.728
Smart Falcon 53 7 0.976 1 0.995 0.876
Super Creek 48 4 1 0.959 0.995 0.736
Special Week 147 14 1 0.975 0.995 0.777
Silence Suzuka 129 18 0.993 1 0.995 0.84
Sirius Symboli 60 9 0.962 1 0.995 0.849
Satono Crown 47 2 0.993 0.75 0.925 0.746
Satono Diamond 79 12 0.98 0.75 0.775 0.649
Sweep Tosho 42 4 0.951 1 0.995 0.895
Tap Dance City 49 4 0.995 1 0.995 0.832
Taiki Shuttle 50 7 0.883 1 0.939 0.756
Tokai Teio 239 23 0.994 1 0.995 0.56
Tamamo Cross 59 6 1 0.86 0.99 0.748
T.M. Opera O 85 13 0.986 1 0.995 0.838
Tanino Gimlet 52 6 0.986 1 0.995 0.771
Mayano Top Gun 70 5 1 0.824 0.995 0.787
Tosen Jordan 68 9 0.959 1 0.995 0.801
Tsurumaru Tsuyoshi 38 2 0.984 1 0.995 0.736
Neo Universe 47 5 1 0.806 0.945 0.753
Vodka 110 15 0.954 1 0.995 0.895
Wonder Acute 53 1 0.976 0.8 0.962 0.877
Winning Ticket 47 5 0.997 1 0.995 0.889
Yukino Bijin 44 7 1 0.965 0.995 0.904
Yaeno Muteki 39 5 0.975 1 0.995 0.932
Yamanin Zephyr 42 3 0.976 0.714 0.96 0.747
Zenno Rob Roy 51 7 0.958 1 0.995 0.895
Furioso 15 0 0.938 1 0.995 0.995
Transcend 40 2 0.964 1 0.995 0.796
Espoir City 30 1 0.939 1 0.995 0.895
North Flight 40 2 0.946 1 0.995 0.597
Dantsu Flame 30 1 0.878 1 0.995 0.895
No Reason 26 0 0.961 0.667 0.699 0.53
Still in Love 28 1 0.961 1 0.995 0.895
Samson Big 25 1 0.891 1 0.995 0.697
Sounds of Earth 53 3 0.972 1 0.995 0.857
Royce and Royce 30 2 0.942 1 0.995 0.398
Duramente 43 1 0.939 1 0.995 0.895
Rhein Kraft 31 3 0.975 1 0.995 0.799
Cesario 37 1 0.947 1 0.995 0.796
Air Messiah 23 1 0.964 1 0.995 0.927
Daring Heart 28 0 0.961 1 0.995 0.858
Orfevre 25 3 0.947 1 0.995 0.995
Gentildonna 40 1 0.944 1 0.995 0.597
Win Variation 21 2 0.94 1 0.995 0.895
Venus Paques 37 2 0.935 1 0.995 0.796
Rigantona 28 1 0.995 1 0.995 0.91
Sonon Elfie 29 1 0.994 1 0.995 0.815
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train UmaDiffusion/ULTIMA-YOLOv9