|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- de |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- finetune |
|
- sft |
|
- dpo |
|
- laser |
|
- augmentation |
|
- german |
|
- english |
|
- moe |
|
--- |
|
![SauerkrautLM](https://vago-solutions.ai/wp-content/uploads/2024/03/laserchatmoe.png "SauerkrautLM-14b-MoE-LaserChat") |
|
## VAGO solutions SauerkrautLM-14b-MoE-LaserChat |
|
Introducing **SauerkrautLM-14b-MoE-LaserChat** – our Sauerkraut (2x7b) 14b MoE version of the powerful [SauerkrautLM-7b-LaserChat](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-LaserChat) and [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B) ! |
|
|
|
By combining the two models, we were able to significantly increase both the German and English language skills. |
|
In addition, the initial SauerkrautLM-7b-LaserChat also acts as an adapter for Experiment26-7B, which means it benefits from the chat capabilities of the SauerkrautLM-7b-LaserChat. |
|
At the same time, the SauerkrautLM-7b-LaserChat benefits from the knowledge and creativity of Experiment26-7B. |
|
|
|
The model **SauerkrautLM-14b-MoE-LaserChat** is a **joint effort** between **VAGO solutions** and **Hyperspace.ai.** |
|
Much appreciation goes to the tremendous research effort of **Fernando Fernandes Neto, David Golchinfar and Eric Hartford on their laserRMT approach.** |
|
Without their independent research collaboration this model release would not have been possible. |
|
|
|
|
|
# Table of Contents |
|
1. [Overview of all SauerkrautLM-14b-MoE-LaserChat models](#all-sauerkrautlm-14b-MoE-laserchat-models) |
|
2. [Model Details](#model-details) |
|
- [Prompt template](#prompt-template) |
|
3. [Evaluation](#evaluation) |
|
5. [Disclaimer](#disclaimer) |
|
6. [Contact](#contact) |
|
7. [Collaborations](#collaborations) |
|
8. [Acknowledgement](#acknowledgement) |
|
|
|
|
|
## All SauerkrautLM-14b-MoE-LaserChat Models |
|
|
|
| Model | HF | GPTQ | GGUF | AWQ | |
|
|-------|-------|-------|-------|-------| |
|
| SauerkrautLM-14b-MoE-LaserChat | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-14b-MoE-LaserChat) | coming soon | coming soon | coming soon | |
|
|
|
## Model Details |
|
**SauerkrautLM-14b-MoE-LaserChat** |
|
- **Model Type:** SauerkrautLM-14b-MoE-LaserChat is a MoE Model based on [SauerkrautLM-7b-LaserChat](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-LaserChat) and [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B) |
|
- **Language(s):** German, English |
|
- **License:** Apache 2.0 |
|
- **Contact:** [VAGO solutions](https://vago-solutions.ai), [Hyperspace.computer](https://hyperspace.computer/) |
|
|
|
|
|
We improved the German language skills on this model further. Nevertheless, certain formulations may occur that are not entirely correct. |
|
|
|
|
|
### Prompt Template: |
|
``` |
|
GPT4 Correct User: Hallo, wie geht es dir?<|end_of_turn|>GPT4 Correct Assistant: Hallo! Ich bin ein künstliches Intelligenzsystem und habe keine persönlichen Gefühle oder körperliche Zustände. Wie kann ich Ihnen helfen?<|end_of_turn|>GPT4 Correct User: Ich benötige nur einen kurzen Satz, den ich in das Prompt Template veröffentlichen kann.<|end_of_turn|>GPT4 Correct Assistant: |
|
|
|
|
|
``` |
|
|
|
|
|
``` |
|
GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hello! How can I help you today? If you have any questions or need assistance, feel free to ask.<|end_of_turn|>GPT4 Correct User: I just need a short sentence to post in the prompt template.<|end_of_turn|>GPT4 Correct Assistant: |
|
|
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
**Open LLM Leaderboard:** |
|
|
|
benchmarked on lm-evaluation-harness 0.4.1 |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 71.65 | |
|
| ARC (25-shot) | 68.09 | |
|
| HellaSwag (10-shot) | 84.78 | |
|
| MMLU (5-shot) | 63.59| |
|
| TruthfulQA (0-shot) | 58.57 | |
|
| Winogrande (5-shot) | 80.74 | |
|
| GSM8K (5-shot) | 74.15 | |
|
|
|
**Performance** |
|
|
|
| Model |AGIEval|GPT4All|TruthfulQA|BigBench|Average ⬇️| |
|
|-----------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[VAGOsolutions/SauerkrautLM-14b-MoE-LaserChat](https://huggingface.co/VAGOsolutions/SauerkrautLM-14b-MoE-LaserChat) | 44.38| 74.76| 58.57| 47.98| 56.42| |
|
|[VAGOsolutions/SauerkrautLM-Gemma-7b](https://huggingface.co/VAGOsolutions/SauerkrautLM-Gemma-7b) | 37.5| 72.46| 61.24| 45.33| 54.13| |
|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 37.52| 71.77| 55.26| 39.77| 51.08| |
|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)| 34.22| 66.37| 52.19| 37.10| 47.47| |
|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 21.33| 40.84| 41.70| 30.25| 33.53| |
|
|
|
|
|
<details><summary>Details of AGIEval, GPT4All, TruthfulQA, BigBench </summary> |
|
|
|
**AGIEval** |
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|------------------------------|------:|------|------|--------|-----:|---|-----:| |
|
|agieval_sat_math | 1|none |None |acc |0.3727|± |0.0327| |
|
| | |none |None |acc_norm|0.3045|± |0.0311| |
|
|agieval_sat_en_without_passage| 1|none |None |acc |0.4806|± |0.0349| |
|
| | |none |None |acc_norm|0.4612|± |0.0348| |
|
|agieval_sat_en | 1|none |None |acc |0.7816|± |0.0289| |
|
| | |none |None |acc_norm|0.7621|± |0.0297| |
|
|agieval_lsat_rc | 1|none |None |acc |0.6134|± |0.0297| |
|
| | |none |None |acc_norm|0.6059|± |0.0298| |
|
|agieval_lsat_lr | 1|none |None |acc |0.5431|± |0.0221| |
|
| | |none |None |acc_norm|0.5216|± |0.0221| |
|
|agieval_lsat_ar | 1|none |None |acc |0.2435|± |0.0284| |
|
| | |none |None |acc_norm|0.2174|± |0.0273| |
|
|agieval_logiqa_en | 1|none |None |acc |0.3871|± |0.0191| |
|
| | |none |None |acc_norm|0.4101|± |0.0193| |
|
|agieval_aqua_rat | 1|none |None |acc |0.3031|± |0.0289| |
|
| | |none |None |acc_norm|0.2677|± |0.0278| |
|
|
|
Average: 44.38% |
|
|
|
**GPT4All** |
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|---------|------:|------|------|--------|-----:|---|-----:| |
|
|arc_challenge| 1|none |None |acc |0.5947|± |0.0143| |
|
| | |none |None |acc_norm|0.6280|± |0.0141| |
|
|arc_easy | 1|none |None |acc |0.8506|± |0.0073| |
|
| | |none |None |acc_norm|0.8468|± |0.0074| |
|
|boolq | 2|none |None |acc |0.8761|± |0.0058| |
|
|hellaswag | 1|none |None |acc |0.6309|± |0.0048| |
|
| | |none |None |acc_norm|0.8323|± |0.0037| |
|
|openbookqa | 1|none |None |acc |0.326 |± |0.0210| |
|
| | |none |None |acc_norm|0.470| ± |0.0223| |
|
|piqa | 1|none |None |acc |0.8237|± |0.0089| |
|
| | |none |None |acc_norm|0.8335|± |0.0087| |
|
|winogrande | 1|none |None |acc |0.7466|± |0.0122| |
|
|
|
Average: 74.76% |
|
|
|
**TruthfulQA** |
|
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |
|
|--------------|------:|------|-----:|------|-----:|---|-----:| |
|
|truthfulqa_mc2| 2|none | 0|acc |0.5857|± |0.0141| |
|
|
|
|
|
Average: 58.57% |
|
|
|
**Bigbench** |
|
| Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |
|
|----------------------------------------------------|------:|----------------|-----:|-----------|-----:|---|-----:| |
|
|bbh_zeroshot_tracking_shuffled_objects_three_objects| 2|flexible-extract| 0|exact_match|0.3120|± |0.0294| |
|
|bbh_zeroshot_tracking_shuffled_objects_seven_objects| 2|flexible-extract| 0|exact_match|0.1560|± |0.0230| |
|
|bbh_zeroshot_tracking_shuffled_objects_five_objects | 2|flexible-extract| 0|exact_match|0.1720|± |0.0239| |
|
|bbh_zeroshot_temporal_sequences | 2|flexible-extract| 0|exact_match|0.3960|± |0.0310| |
|
|bbh_zeroshot_sports_understanding | 2|flexible-extract| 0|exact_match|0.8120|± |0.0248| |
|
|bbh_zeroshot_snarks | 2|flexible-extract| 0|exact_match|0.5843|± |0.0370| |
|
|bbh_zeroshot_salient_translation_error_detection | 2|flexible-extract| 0|exact_match|0.4640|± |0.0316| |
|
|bbh_zeroshot_ruin_names | 2|flexible-extract| 0|exact_match|0.4360|± |0.0314| |
|
|bbh_zeroshot_reasoning_about_colored_objects | 2|flexible-extract| 0|exact_match|0.5520|± |0.0315| |
|
|bbh_zeroshot_navigate | 2|flexible-extract| 0|exact_match|0.5800|± |0.0313| |
|
|bbh_zeroshot_movie_recommendation | 2|flexible-extract| 0|exact_match|0.7320|± |0.0281| |
|
|bbh_zeroshot_logical_deduction_three_objects | 2|flexible-extract| 0|exact_match|0.5680|± |0.0314| |
|
|bbh_zeroshot_logical_deduction_seven_objects | 2|flexible-extract| 0|exact_match|0.3920|± |0.0309| |
|
|bbh_zeroshot_logical_deduction_five_objects | 2|flexible-extract| 0|exact_match|0.3960|± |0.0310| |
|
|bbh_zeroshot_geometric_shapes | 2|flexible-extract| 0|exact_match|0.3800|± |0.0308| |
|
|bbh_zeroshot_disambiguation_qa | 2|flexible-extract| 0|exact_match|0.6760|± |0.0297| |
|
|bbh_zeroshot_date_understanding | 2|flexible-extract| 0|exact_match|0.4400|± |0.0315| |
|
|bbh_zeroshot_causal_judgement | 2|flexible-extract| 0|exact_match|0.5882|± |0.0361| |
|
|
|
Average: 47.98% |
|
|
|
</details> |
|
|
|
|
|
|
|
## Disclaimer |
|
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. |
|
However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. |
|
Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models. |
|
|
|
## Contact |
|
If you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions. |
|
|
|
## Collaborations |
|
We are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.de/#Kontakt), [Hyperspace.computer](https://hyperspace.computer/) |
|
|
|
## Acknowledgement |
|
Many thanks to [yam-peleg](https://huggingface.co/yam-peleg) for providing such valuable model to the Open-Source community |