Update README.md
Browse files
README.md
CHANGED
@@ -19,8 +19,6 @@ task_ids:
|
|
19 |
---
|
20 |
|
21 |
|
22 |
-
# TurkishBERTweet
|
23 |
-
|
24 |
#### Table of contents
|
25 |
1. [Introduction](#introduction)
|
26 |
2. [Main results](#results)
|
@@ -34,7 +32,7 @@ task_ids:
|
|
34 |
- [HateSpeech Detection](#hs_lora)
|
35 |
|
36 |
4. [Citation](#citation)
|
37 |
-
# <a name="introduction"></a> TurkishBERTweet
|
38 |
|
39 |
|
40 |
# <a name="results"></a> Main Results
|
@@ -46,13 +44,13 @@ task_ids:
|
|
46 |
# <a name="trainedModels"></a> Model
|
47 |
Model | #params | Arch. | Max length | Pre-training data
|
48 |
---|---|---|---|---
|
49 |
-
`VRLLab/TurkishBERTweet` | 163M | base | 128 | 894M Turkish Tweets (uncased)
|
50 |
|
51 |
# <a name="loraAdapter"></a> Lora Adapters
|
52 |
Model | train f1 | dev f1 | test f1 | Dataset Size
|
53 |
---|---|---|---|---
|
54 |
-
`VRLLab/TurkishBERTweet-Lora-SA` | 0.799 | 0.687 | 0.692 | 42,476 Turkish Tweets
|
55 |
-
`VRLLab/TurkishBERTweet-Lora-HS` | 0.915 | 0.796 | 0.831 | 4,683 Turkish Tweets
|
56 |
# <a name="usage2"></a> Example usage
|
57 |
|
58 |
|
@@ -201,13 +199,14 @@ Yes : kasmayin artik ya kac kere tanik olduk bu azgin tehlikeli “multecilerin
|
|
201 |
# <a name="citation"></a> Citation
|
202 |
```bibtex
|
203 |
@article{najafi2022TurkishBERTweet,
|
204 |
-
title={TurkishBERTweet
|
205 |
author={Najafi, Ali and Varol, Onur},
|
206 |
-
journal={arXiv preprint },
|
207 |
year={2023}
|
208 |
}
|
209 |
```
|
210 |
|
|
|
211 |
## Acknowledgments
|
212 |
We thank [Fatih Amasyali](https://avesis.yildiz.edu.tr/amasyali) for providing access to Tweet Sentiment datasets from Kemik group.
|
213 |
This material is based upon work supported by the Google Cloud Research Credits program with the award GCP19980904. We also thank TUBITAK (121C220 and 222N311) for funding this project.
|
|
|
19 |
---
|
20 |
|
21 |
|
|
|
|
|
22 |
#### Table of contents
|
23 |
1. [Introduction](#introduction)
|
24 |
2. [Main results](#results)
|
|
|
32 |
- [HateSpeech Detection](#hs_lora)
|
33 |
|
34 |
4. [Citation](#citation)
|
35 |
+
# <a name="introduction"></a> TurkishBERTweet: Fast and Reliable Large Language Model for Social Media Analysis
|
36 |
|
37 |
|
38 |
# <a name="results"></a> Main Results
|
|
|
44 |
# <a name="trainedModels"></a> Model
|
45 |
Model | #params | Arch. | Max length | Pre-training data
|
46 |
---|---|---|---|---
|
47 |
+
[`VRLLab/TurkishBERTweet`](https://huggingface.co/VRLLab/TurkishBERTweet) | 163M | base | 128 | 894M Turkish Tweets (uncased)
|
48 |
|
49 |
# <a name="loraAdapter"></a> Lora Adapters
|
50 |
Model | train f1 | dev f1 | test f1 | Dataset Size
|
51 |
---|---|---|---|---
|
52 |
+
[`VRLLab/TurkishBERTweet-Lora-SA`](https://huggingface.co/VRLLab/TurkishBERTweet-Lora-SA) | 0.799 | 0.687 | 0.692 | 42,476 Turkish Tweets
|
53 |
+
[`VRLLab/TurkishBERTweet-Lora-HS`](https://huggingface.co/VRLLab/TurkishBERTweet-Lora-HS) | 0.915 | 0.796 | 0.831 | 4,683 Turkish Tweets
|
54 |
# <a name="usage2"></a> Example usage
|
55 |
|
56 |
|
|
|
199 |
# <a name="citation"></a> Citation
|
200 |
```bibtex
|
201 |
@article{najafi2022TurkishBERTweet,
|
202 |
+
title={TurkishBERTweet: Fast and Reliable Large Language Model for Social Media Analysis},
|
203 |
author={Najafi, Ali and Varol, Onur},
|
204 |
+
journal={arXiv preprint 2311.18063},
|
205 |
year={2023}
|
206 |
}
|
207 |
```
|
208 |
|
209 |
+
|
210 |
## Acknowledgments
|
211 |
We thank [Fatih Amasyali](https://avesis.yildiz.edu.tr/amasyali) for providing access to Tweet Sentiment datasets from Kemik group.
|
212 |
This material is based upon work supported by the Google Cloud Research Credits program with the award GCP19980904. We also thank TUBITAK (121C220 and 222N311) for funding this project.
|