|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-finetuned-xsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xsum |
|
type: xsum |
|
config: default |
|
split: train[:10%] |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 35.8214 |
|
pipeline_tag: summarization |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-finetuned-xsum |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the xsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9356 |
|
- Rouge1: 35.8214 |
|
- Rouge2: 14.7565 |
|
- Rougel: 29.4566 |
|
- Rougelsum: 29.4496 |
|
- Gen Len: 19.562 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.301 | 1.0 | 1148 | 1.9684 | 34.4715 | 13.6638 | 28.1147 | 28.1204 | 19.5816 | |
|
| 2.1197 | 2.0 | 2296 | 1.9442 | 35.2502 | 14.284 | 28.8462 | 28.8384 | 19.5546 | |
|
| 1.9804 | 3.0 | 3444 | 1.9406 | 35.7799 | 14.7422 | 29.3669 | 29.3742 | 19.5326 | |
|
| 1.8891 | 4.0 | 4592 | 1.9349 | 35.5151 | 14.4668 | 29.0359 | 29.0484 | 19.5492 | |
|
| 1.827 | 5.0 | 5740 | 1.9356 | 35.8214 | 14.7565 | 29.4566 | 29.4496 | 19.562 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |